ترغب بنشر مسار تعليمي؟ اضغط هنا

Stripe Antiferromagnetic Spin Fluctuations in SrCo$_{2}$As$_{2}$

106   0   0.0 ( 0 )
 نشر من قبل Robert J. McQueeney
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inelastic neutron scattering measurements of paramagnetic SrCo$_{2}$As$_{2}$ at T=5 K reveal antiferromagnetic (AFM) spin fluctuations that are peaked at a wavevector of $textbf{Q}_{mathrm{AFM}}=(1/2,1/2,1)$ and possess a large energy scale. These stripe spin fluctuations are similar to those found in $A$Fe$_{2}$As$_{2}$ compounds, where spin-density wave AFM is driven by Fermi surface nesting between electron and hole pockets separated by $textbf{Q}_{mathrm{AFM}}$. SrCo$_{2}$As$_{2}$ has a more complex Fermi surface and band structure calculations indicate a potential instability towards either a ferromagnetic or stripe AFM ground state. The results suggest that stripe AFM magnetism is a general feature of both iron and cobalt-based arsenides and the search for spin fluctuation-induced unconventional superconductivity should be expanded to include cobalt-based compounds.

قيم البحث

اقرأ أيضاً

We use inelastic neutron scattering to study energy and wave vector dependence of spin fluctuations in SrCo$_2$As$_2$, derived from SrFe$_{2-x}$Co$_x$As$_2$ iron pnictide superconductors. Our data reveals the coexistence of antiferromagnetic (AF) and ferromagnetic (FM) spin fluctuations at wave vectors $textbf{Q}_{rm AF}$=(1,0) and $textbf{Q}_{rm FM}$=(0,0)/(2,0), respectively. By comparing neutron scattering results with those of dynamic mean field theory calculation and angle-resolved photoemission spectroscopy experiments, we conclude that both AF and FM spin fluctuations in SrCo$_2$As$_2$ are closely associated with a flat band of the $e_g$ orbitals near the Fermi level, different from the $t_{2g}$ orbitals in superconducting SrFe$_{2-x}$Co$_x$As$_2$. Therefore, Co-substitution in SrFe$_{2-x}$Co$_x$As$_2$ induces a $t_{2g}$ to $e_g$ orbital switching, and is responsible for FM spin fluctuations detrimental to the singlet pairing superconductivity.
To identify the key parameter for optimal superconductivity in iron pnictides, we measured the $^{31}$P-NMR relaxation rate on BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ ($x = 0.22$ and 0.28) under pressure and compared the effects of chemical substitution and physical pressure. For $x = 0.22$, structural and antiferromagnetic (AFM) transition temperatures both show minimal changes with pressure up to 2.4~GPa, whereas the superconducting transition temperature $T_{rm c}$ increases to twice its former value. In contrast, for $x=0.28$ near the AFM quantum critical point (QCP), the structural phase transition is quickly suppressed by pressure and $T_{rm c}$ reaches a maximum. The analysis of the temperature-dependent nuclear relaxation rate indicates that these contrasting behaviors can be quantitatively explained by a single curve of the $T_{rm c}$ dome as a function of Weiss temperature $theta$, which measures the distance to the QCP. Moreover, the $T_{rm c}$-$theta$ curve under pressure precisely coincides with that with chemical substitution, which is indicative of the existence of a universal relationship between low-energy AFM fluctuations and superconductivity on BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$.
We report neutron scattering measurements of single-crystalline YFe$_2$Ge$_2$ in the normal state, which has the same crystal structure to the 122 family of iron pnictide superconductors. YFe$_2$Ge$_2$ does not exhibit long range magnetic order, but exhibits strong spin fluctuations. Like the iron pnictides, YFe$_2$Ge$_2$ displays anisotropic stripe-type antiferromagnetic spin fluctuations at ($pi$, $0$, $pi$). More interesting, however, is the observation of strong spin fluctuations at the in-plane ferromagnetic wavevector ($0$, $0$, $pi$). These ferromagnetic spin fluctuations are isotropic in the ($H$, $K$) plane, whose intensity exceeds that of stripe spin fluctuations. Both the ferromagnetic and stripe spin fluctuations remain gapless down to the lowest measured energies. Our results naturally explain the absence of magnetic order in YFe$_2$Ge$_2$ and also imply that the ferromagnetic correlations may be a key ingredient for iron-based materials.
We investigate magnetic ordering in metallic Ba[Fe(1-x)Mn(x)](2)As(2) and discuss the unusual magnetic phase, which was recently discovered for Mn concentrations x > 10%. We argue that it can be understood as a Griffiths-type phase that forms above t he quantum critical point associated with the suppression of the stripe-antiferromagnetic spin-density-wave (SDW) order in BaFe2As2 by the randomly introduced localized Mn moments acting as strong magnetic impurities. While the SDW transition at x = 0, 2.5% and 5% remains equally sharp, in the x = 12% sample we observe an abrupt smearing of the antiferromagnetic transition in temperature and a considerable suppression of the spin gap in the magnetic excitation spectrum. According to our muon-spin-relaxation, nuclear magnetic resonance and neutron-scattering data, antiferromagnetically ordered rare regions start forming in the x = 12% sample significantly above the Neel temperature of the parent compound. Upon cooling, their volume grows continuously, leading to an increase in the magnetic Bragg intensity and to the gradual opening of a partial spin gap in the magnetic excitation spectrum. Using neutron Larmor diffraction, we also demonstrate that the magnetically ordered volume is characterized by a finite orthorhombic distortion, which could not be resolved in previous diffraction studies most probably due to its coexistence with the tetragonal phase and a microstrain-induced broadening of the Bragg reflections. We argue that Ba[Fe(1-x)Mn(x)](2)As(2) could represent an interesting model spin-glass system, in which localized magnetic moments are randomly embedded into a SDW metal with Fermi surface nesting.
The recent discovery and subsequent developments of FeAs-based superconductors have presented novel challenges and opportunities in the quest for superconducting mechanisms in correlated-electron systems. Central issues of ongoing studies include int erplay between superconductivity and magnetism as well as the nature of the pairing symmetry reflected in the superconducting energy gap. In the cuprate and RE(O,F)FeAs (RE = rare earth) systems, the superconducting phase appears without being accompanied by static magnetic order, except for narrow phase-separated regions at the border of phase boundaries. By muon spin relaxation measurements on single crystal specimens, here we show that superconductivity in the AFe$_{2}$As$_{2}$ (A = Ca,Ba,Sr) systems, in both the cases of composition and pressure tunings, coexists with a strong static magnetic order in a partial volume fraction. The superfluid response from the remaining paramagnetic volume fraction of (Ba$_{0.5}$K$_{0.5}$)Fe$_{2}$As$_{2}$ exhibits a nearly linear variation in T at low temperatures, suggesting an anisotropic energy gap with line nodes and/or multi-gap effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا