ﻻ يوجد ملخص باللغة العربية
We present trispectrum estimation methods which can be applied to general non-separable primordial and CMB trispectra. We present a general optimal estimator for the connected part of the trispectrum, for which we derive a quadratic term to incorporate the effects of inhomogeneous noise and masking. We describe a general algorithm for creating simulated maps with given arbitrary (and independent) power spectra, bispectra and trispectra. We propose a universal definition of the trispectrum parameter $T_{NL}$, so that the integrated bispectrum on the observational domain can be consistently compared between theoretical models. We define a shape function for the primordial trispectrum, together with a shape correlator and a useful parametrisation for visualizing the trispectrum. We derive separable analytic CMB solutions in the large-angle limit for constant and local models. We present separable mode decompositions which can be used to describe any primordial or CMB bispectra on their respective wavenumber or multipole domains. By extracting coefficients of these separable basis functions from an observational map, we are able to present an efficient estimator for any given theoretical model with a nonseparable trispectrum. The estimator has two manifestations, comparing the theoretical and observed coefficients at either primordial or late times. These mode decomposition methods are numerically tractable with order $l^5$ operations for the CMB estimator and approximately order $l^6$ for the general primordial estimator (reducing to order $l^3$ in both cases for a special class of models). We also demonstrate how the trispectrum can be reconstructed from observational maps using these methods.
We compute the impact of the running of higher order density correlation functions on the two point functions of CMB spectral distortions (SD). We show that having some levels of running enhances all of the SDs by few orders of magnitude which might
Cosmic magnetic fields are observed to be coherent on large scales and could have a primordial origin. Non-Gaussian signals in the cosmic microwave background (CMB) are generated by primordial magnetic fields as the magnetic stresses and temperature
We develop a general framework for data analysis and phenomenology of the CMB four-point function or trispectrum. To lowest order in the derivative expansion, the inflationary action admits three quartic operators consistent with symmetry: $dotsigma^
Primordial magnetic fields will generate non-Gaussian signals in the cosmic microwave background (CMB) as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. We compute a new measure of magnetic no
We present constraints on the patchy reionization by measuring the trispectrum of the Planck 2015 cosmic microwave background (CMB) temperature anisotropies. The patchy reionization leads to anisotropies in the CMB optical depth, and the statistics o