ترغب بنشر مسار تعليمي؟ اضغط هنا

A multiscale approach to environment and its influence on the colour distribution of galaxies

108   0   0.0 ( 0 )
 نشر من قبل David Wilman
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David Wilman MPE




اسأل ChatGPT حول البحث

We present a multiscale approach to measurements of galaxy density, applied to a volume-limited sample constructed from SDSS DR5. We populate a rich parameter space by obtaining independent measurements of density on different scales for each galaxy, avoiding the implicit assumptions involved, e.g., in the construction of group catalogues. As the first application of this method, we study how the bimodality in galaxy colour distribution (u-r) depends on multiscale density. The u-r galaxy colour distribution is described as the sum of two gaussians (red and blue) with five parameters: the fraction of red galaxies (f_r) and the position and width of the red and blue peaks (mu_r, mu_b, sigma_r and sigma_b). Galaxies mostly react to their smallest scale (< 0.5 Mpc) environments: in denser environments red galaxies are more common (larger f_r), redder (larger mu_r) and with a narrower distribution (smaller sigma_r), while blue galaxies are redder (larger mu_b) but with a broader distribution (larger sigma_b). There are residual correlations of f_r and mu_b with 0.5 - 1 Mpc scale density, which imply that total or partial truncation of star formation can relate to a galaxys environment on these scales. Beyond 1 Mpc (0.5 Mpc for mu_r) there are no positive correlations with density. However f_r (mu_r) anti-correlates with density on >2 (1) Mpc scales at fixed density on smaller scales. We examine these trends qualitatively in the context of the halo model, utilizing the properties of haloes within which the galaxies are embedded, derived by Yang et al, 2007 and applied to a group catalogue. This yields an excellent description of the trends with multiscale density, including the anti-correlations on large scales, which map the region of accretion onto massive haloes. Thus we conclude that galaxies become red only once they have been accreted onto haloes of a certain mass.



قيم البحث

اقرأ أيضاً

167 - David Wilman 2010
Physical processes influencing the properties of galaxies can be traced by the dependence and evolution of galaxy properties on their environment. A detailed understanding of this dependence can only be gained through comparison of observations with models, with an appropriate quantification of the rich parameter space describing the environment of the galaxy. We present a new, multiscale parameterization of galaxy environment which retains an observationally motivated simplicity whilst utilizing the information present on different scales. We examine how the distribution of galaxy (u-r) colours in the Sloan Digital Sky Survey (SDSS), parameterized using a double gaussian (red plus blue peak) fit, depends upon multiscale density. This allows us to probe the detailed dependence of galaxy properties on environment in a way which is independent of the halo model. Nonetheless, cross-correlation with the group catalogue constructed by Yang et al, 2007 shows that galaxy properties trace environment on different scales in a way which mimics that expected within the halo model. This provides independent support for the existence of virialized haloes, and important additional clues to the role played by environment in the evolution of the galaxy population. This work is described in full by Wilman et al., 2010, MNRAS, accepted
We present the results of a study investigating the rest-frame ultra-violet (UV) spectral slopes of redshift z~5 Lyman-break galaxies (LBGs). By combining deep Hubble Space Telescope imaging of the CANDELS and HUDF fields with ground-based imaging fr om the UKIDSS Ultra Deep Survey (UDS), we have produced a large sample of z~5 LBGs spanning an unprecedented factor of >100 in UV luminosity. Based on this sample we find a clear colour-magnitude relation (CMR) at z~5, such that the rest-frame UV slopes (beta) of brighter galaxies are notably redder than their fainter counterparts. We determine that the z~5 CMR is well described by a linear relationship of the form: d beta = (-0.12 +/- 0.02) d Muv, with no clear evidence for a change in CMR slope at faint magnitudes (i.e. Muv > -18.9). Using the results of detailed simulations we are able, for the first time, to infer the intrinsic (i.e. free from noise) variation of galaxy colours around the CMR at z~5. We find significant (12 sigma) evidence for intrinsic colour variation in the sample as a whole. Our results also demonstrate that the width of the intrinsic UV slope distribution of z~5 galaxies increases from Delta(beta)=0.1 at Muv=-18 to Delta(beta)=0.4 at Muv=-21. We suggest that the increasing width of the intrinsic galaxy colour distribution and the CMR itself are both plausibly explained by a luminosity independent lower limit of beta=-2.1, combined with an increase in the fraction of red galaxies in brighter UV-luminosity bins.
We present a series of colour evolution models for Luminous Red Galaxies (LRGs) in the 7th spectroscopic data release of the Sloan Digital Sky Survey (SDSS), computed using the full-spectrum fitting code VESPA on high signal-to-noise stacked spectra. The colour-evolution models are computed as a function of colour, luminosity and redshift, and we do not a-priori assume that LRGs constitute a uniform population of galaxies in terms of stellar evolution. By computing star-formation histories from the fossil record, the measured stellar evolution of the galaxies is decoupled from the surveys selection function, which also evolves with redshift. We present these evolutionary models computed using three different sets of Stellar Population Synthesis (SPS) codes. We show that the traditional fiducial model of purely passive stellar evolution of LRGs is broadly correct, but it is not sufficient to explain the full spectral signature. We also find that higher-order corrections to this model are dependent on the SPS used, particularly when calculating the amount of recent star formation. The amount of young stars can be non-negligible in some cases, and has important implications for the interpretation of the number density of LRGs within the selection box as a function of redshift. Dust extinction, however, is more robust to the SPS modelling: extinction increases with decreasing luminosity, increasing redshift, and increasing r-i colour. We are making the colour evolution tracks publicly available at http://www.icg.port.ac.uk/~tojeiror/lrg_evolution/.
112 - J. Mendez-Abreu 2009
Galaxy mergers and interactions are mechanisms which could drive the formation of bars. Therefore, we could expect that the fraction of barred galaxies increases with the local density. Here we show the first results of an extensive search for barred galaxies in different environments. We conclude that the bar fraction on bright (L>L*) field, Virgo, and Coma cluster galaxies is compatible. These results point towards an scenario where the formation and/or evolution of bars depend mostly on internal galaxy processes rather than external ones.
104 - B. Vollmer 2012
The influence of the environment on gas surface density and star formation efficiency of cluster spiral galaxies is investigated. We extend previous work on radial profiles by a pixel-to pixel analysis looking for asymmetries due to environmental int eractions. The star formation rate is derived from GALEX UV and Spitzer total infrared data. As in field galaxies, the star formation rate for most Virgo galaxies is approximately proportional to the molecular gas mass. Except for NGC 4438, the cluster environment does not affect the star formation efficiency with respect to the molecular gas. Gas truncation is not associated with major changes in the total gas surface density distribution of the inner disk of Virgo spiral galaxies. In three galaxies, possible increases in the molecular fraction and the star formation efficiency with respect to the total gas, of factors of 1.5 to 2, are observed on the windward side of the galactic disk. A significant increase of the star formation efficiency with respect to the molecular gas content on the windward side of ram pressure-stripped galaxies is not observed. The ram-pressure stripped extraplanar gas of 3 highly inclined spiral galaxies shows a depressed star formation efficiency with respect to the total gas, and one of them (NGC 4438) shows a depressed rate even with respect to the molecular gas. The interpretation is that stripped gas loses the gravitational confinement and associated pressure of the galactic disk, and the gas flow is diverging, so the gas density decreases and the star formation rate drops. However, the stripped extraplanar gas in one highly inclined galaxy (NGC 4569) shows a normal star formation efficiency with respect to the total gas. We propose this galaxy is different because it is observed long after peak pressure, and its extraplanar gas is now in a converging flow as it resettles back into the disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا