ﻻ يوجد ملخص باللغة العربية
We report the observations of spontaneous Raman scattering in silicon photonic crystal waveguides. Continuous-wave measurements of Stokes emission for both wavelength and power dependence is reported in single line-defect waveguides in hexagonal lattice photonic crystal silicon membranes. By utilizing the Bragg gap edge dispersion of the TM-like mode for pump enhancement and the TE-like fundamental mode-onset for Stokes enhancement, the Stokes emission was observed to increase by up to five times in the region of slow group velocity. The results show explicit nonlinear enhancement in a silicon photonic crystal slow-light waveguide device.
Four-wave mixing is observed in a silicon W1 photonic crystal waveguide. The dispersion dependence of the idler conversion efficiency is measured and shown to be enhanced at wavelengths exhibiting slow group velocities. A 12-dB increase in the conver
Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions, and increased phase shifts owing to its ability to promote light-matter interactions. By incorporating a graphene microheater on a slow-light silic
We derive and validate a set of coupled Bloch wave equations for analyzing the reflection and transmission properties of active semiconductor photonic crystal waveguides. In such devices, slow-light propagation can be used to enhance the material gai
We report the characterization of correlated photon pairs generated in dispersion-engineered silicon slow-light photonic crystal waveguides pumped by picosecond pulses. We found that taking advantage of the 15 nm flat-band slow-light window (vg ~ c/3
We demonstrate temporal group delays in coherently-coupled high-Q multi-cavity photonic crystals, in an all-optical analogue to electromagnetically induced transparency. We report deterministic control of the group delay up to 4x the single cavity li