ﻻ يوجد ملخص باللغة العربية
Dilute Laponite suspensions in water at low salt concentration form repulsive colloidal glasses which display physical aging. This phenomenon is still not completely understood and in particular, little is known about the connection between the flow history, as a determinant of the initial state of the system, and the subsequent aging dynamics. Using a stress controlled rheometer, we perform stress jump experiments to observe the elastic component of the flow stress that remains on cessation of flow or flow quenching. We investigate the connection between the dynamics of these residual stresses and the rate of physical aging upon quenching from different points on the steady state flow curve. Quenching from high rates produces a fluid state, G>G, with small, fast relaxing residual stresses and rapid, sigmoidal aging of the complex modulus. Conversely, quenching from lower shear rates produces increasingly jammed states featuring slowly relaxing stresses and a slow increase of the complex modulus with system age. Flow cessation from a fixed shear rate with varying quench durations shows that slower quenches produce smaller residual stresses at short times which relax at long times by smaller extents, by comparison with faster quenches. These smaller stresses are correlated with a higher modulus but slower physical aging of the system. The characteristic time for the residual stress relaxation scales inversely with the quench rate. This implies a frustrated approach to any ideal stress-free state that succinctly reflects the frustrated nature of these glassy systems.
In this work, we study ageing behavior of aqueous laponite suspension, a model soft glassy material, in creep. We observe that viscoelastic behavior is time dependent and is strongly influenced by the deformation field; the effect is known to arise d
We investigate the stress relaxation behavior on the application of step strains to aging aqueous suspensions of the synthetic clay Laponite. The stress exhibits a two-step decay, from which the slow relaxation modes are extracted as functions of the
Motivated by the mean field prediction of a Gardner phase transition between a normal glass and a marginally stable glass, we investigate the off-equilibrium dynamics of three-dimensional polydisperse hard spheres, used as a model for colloidal or gr
A model is proposed that considers aging and rejuvenation in a soft glassy material as respectively a decrease and an increase in free energy. The aging term is weighted by inverse of characteristic relaxation time suggesting greater mobility of the
The history dependence of the glasses formed from flow-melted steady states by a sudden cessation of the shear rate $dotgamma$ is studied in colloidal suspensions, by molecular dynamics simulations, and mode-coupling theory. In an ideal glass, stress