ﻻ يوجد ملخص باللغة العربية
In this work, we study ageing behavior of aqueous laponite suspension, a model soft glassy material, in creep. We observe that viscoelastic behavior is time dependent and is strongly influenced by the deformation field; the effect is known to arise due to ageing and rejuvenation. We show that irrespective of strength of deformation field (shear stress) and age, when imposed time-scale is normalized with dominating relaxation mode of the system, universal ageing behavior is obtained demonstrating time-stress superposition; the phenomena that may be generic in variety of soft materials.
We investigate the stress relaxation behavior on the application of step strains to aging aqueous suspensions of the synthetic clay Laponite. The stress exhibits a two-step decay, from which the slow relaxation modes are extracted as functions of the
Dilute Laponite suspensions in water at low salt concentration form repulsive colloidal glasses which display physical aging. This phenomenon is still not completely understood and in particular, little is known about the connection between the flow
Motivated by the mean field prediction of a Gardner phase transition between a normal glass and a marginally stable glass, we investigate the off-equilibrium dynamics of three-dimensional polydisperse hard spheres, used as a model for colloidal or gr
Evolution of the energy landscape during physical aging of glassy materials can be understood from the frequency and strain dependence of the shear modulus but the non-stationary nature of these systems frustrates investigation of their instantaneous
A new protocol for an aging experiment is studied in the electron-glass phase of indium-oxide films. In this protocol, the sample is exposed to a non-ohmic electric field F for a waiting time t_{w} during which the system attempts to reach a steady s