ﻻ يوجد ملخص باللغة العربية
Operation of semiconductor scintillators requires optically-tight integration of the photoreceiver system on the surface of the scintillator slab. We have implemented an efficient and fast quaternary InGaAsP pin photodiode, epitaxially grown upon the surface of an InP scintillator wafer and sensitive to InP luminescence. The diode is characterized by an extremely low room-temperature dark current, about 1 nA/cm2 at the reverse bias of 2 V. The low leakage makes possible a sensitive readout circuitry even though the diode has a large area (1 mm/times1 mm) and therefore large capacitance (50 pF). Results of electrical, optical and radiation testing of the diodes are presented. Detection of individual alpha-particles and gamma-photons is demonstrated.
One of the solutions enabling performance progress, which can overcome the downsizing limit in silicon technology, is the integration of different functional optoelectronic devices within a single chip. Silicon with its indirect band gap has poor opt
Transport properties of holes in InP nanowires were calculated considering electron-phonon interaction via deformation potentials, the effect of temperature and strain fields. Using molecular dynamics, we simulate nanowire structures, LO-phonon energ
We show that the morphology of the initial monolayers of InP on Al0.48In0.52As grown by metalorganic vapor-phase epitaxy does not follow the expected layer-by-layer growth mode of lattice-matched systems, but instead develops a number of low-dimensio
We have studied the emission properties of individual InAs quantum dots (QDs) grown in an InGaAsP matrix on InP(100) by metal-organic vapor-phase epitaxy. Low-temperature microphotoluminescence spectroscopy shows emission from single QDs around 1550
Regular arrays of InP nano pillars have been fabricated by low energy Electron Cyclotron Resonance (ECR) Ar+ ion irradiation on InP(111) surface. Several scanning electron microscopy (SEM) images have been utilized to invetsigate the width, height, a