ترغب بنشر مسار تعليمي؟ اضغط هنا

Grain growth across protoplanetary discs: 10-micron silicate feature versus millimetre slope

119   0   0.0 ( 0 )
 نشر من قبل Dave Lommen
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Young stars are formed within dusty discs. The grains in the disc are originally of the same size as interstellar dust. Models predict that these grains will grow in size through coagulation. Observations of the silicate features at micron wavelengths are consistent with growth to micron sizes whereas the slope of the SED at longer wavelengths traces growth up to mm sizes. We here look for a correlation between these two grain growth indicators. A large sample of T-Tauri and Herbig-Ae/Be stars was observed with the Spitzer Space Telescope at 5-13 micron; a subsample was observed at mm wavelengths. We complement this subsample with data from the literature to maximise the overlap between micron and mm observations and search for correlations. Synthetic spectra are produced to determine which processes may produce the dust evolution. Dust disc masses in the range <1 to 7 x 10^-4 MSun are obtained. Most sources have a mm spectral slope consistent with grain growth. There is a tentative correlation between the 10-micron silicate feature and the mm slope of the SED. The observed sources seem to be grouped per star-forming region in the micron-vs-mm diagram. The modelling results show that the 10-micron feature becomes flatter and subsequently the mm slope becomes shallower. Grain size distributions shallower than that of the ISM and/or bright central stars are required to explain specific features. Settling of larger grains towards the disc midplane affects the 10-micron feature, but hardly the mm slope. The tentative correlation between the strength of the 10-micron feature and the mm slope suggests that the inner and outer disc evolve simultaneously. Dust with a mass dominated by mm-sized grains is required to explain the shallowest mm slopes. Other processes besides grain growth may also be responsible for the removal of small grains.

قيم البحث

اقرأ أيضاً

We present ATCA results of a 3 and 7 mm continuum survey of 20 T Tauri stars in the Chamaeleon and Lupus star forming regions. This survey aims to identify protoplanetary discs with signs of grain growth. We detected 90% of the sources at 3 and 7 mm, and determined the spectral slopes, dust opacity indices and dust disc masses. We also present temporal monitoring results of a small sub-set of sources at 7, 15 mm and 3+6 cm to investigate grain growth to cm sizes and constrain emission mechanisms in these sources. Additionally, we investigated the potential correlation between grain growth signatures in the infrared (10 mu m silicate feature) and millimetre (1-3 mm spectral slope, {alpha}). Eleven sources at 3 and 7 mm have dominant thermal dust emission up to 7 mm, with 7 of these having a 1-3 mm dust opacity index less than unity, suggesting grain growth up to at least mm sizes. The Chamaeleon sources observed at 15 mm and beyond show the presence of excess emission from an ionised wind and/or chromo- spheric emission. Long-timescale monitoring at 7 mm indicated that cm-sized pebbles are present in at least four sources. Short-timescale monitoring at 15 mm suggests the excess emission is from thermal free-free emission. Finally, a weak correlation was found between the strength of the 10 mum feature and {alpha}, suggesting simultaneous dust evolution of the inner and outer parts of the disc. This survey shows that grain growth up to cm-sized pebbles and the presence of excess emission at 15 mm and beyond are common in these systems, and that temporal monitoring is required to disentangle these emission mechanisms.
The 10-micron silicate feature observed with Spitzer in active galactic nuclei (AGN) reveals some puzzling behavior. It (1) has been detected in emission in type 2 sources, (2) shows broad, flat-topped emission peaks shifted toward long wavelengths i n several type 1 sources, and (3) is not seen in deep absorption in any source observed so far. We solve all three puzzles with our clumpy dust radiative transfer formalism. (1) We present the spectral energy distribution (SED) of SST1721+6012, the first type 2 quasar observed to show a clear 10-mic silicate feature in emission. We constructed a large database of clumpy torus models and performed extensive fitting of the observed SED, constraining several of the torus parameters. We find that the source bolometric luminosity is ~3*10^12 L_sun. Our modeling suggests that <35% of objects with tori sharing characteristics and geometry similar to the best fit would have their central engines obscured. This relatively low obscuration probability can explain the clear appearance of the 10-mic emission feature in SST1721+6012 together with its rarity among other QSO2. (2) We also fitted the SED of PG1211+143, one of the first type 1 QSOs with a 10-mic silicate feature in emission. Among similar sources, this QSO appears to display an unusually broadened feature whose peak is shifted toward longer wavelengths. Although this led to suggestions of non-standard dust chemistry in these sources, our analysis fits such SEDs with standard galactic dust; the apparent peak shifts arise from radiative transfer effects. (3) We find that the distribution of silicate feature strengths among clumpy torus models closely resembles the observed distribution, and the feature never occurs deeply absorbed. (abridged)
156 - T. J. Haworth 2021
Dust plays a key role in the formation of planets and its emission also provides one of our most accessible views of protoplanetary discs. If set by radiative equilibrium with the central star, the temperature of dust in the disc plateaus at around $ 10-20$K in the outer regions. However sufficiently nearby massive stars can heat the outer disc to substantially higher temperatures. In this paper we study the radiative equilibrium temperature of discs in the presence of massive external sources and gauge the effect that it has on millimetre dust mass estimates. Since millimetre grains are not entrained in any wind we focus on geometrically simple 2D-axisymmetric disc models using radiative transfer calculations with both the host star and an external source. Recent surveys have searched for evidence of massive stars influencing disc evolution using disc properties as a function of projected separation. In assuming a disc temperature of $20$K for a disc a distance $D$ from a strong radiation source, disc masses are overestimated by a factor that scales with $D^{-1/2}$ interior to the separation that external heating becomes important. This could significantly alter dust mass estimates of discs in close proximity to $theta^1$C in the Orion Nebular Cluster. We also make an initial assessment of the effect upon snow lines. Within a parsec of an O star like $theta^1$C a CO snow line no longer exists, though the water snow line is virtually unaffected except for very close separations of $leq0.01,$pc.
Spatially resolved observations of protoplanetary discs are revealing that their inner regions can be warped or broken from the outer disc. A few mechanisms are known to lead to such 3D structures; among them, the interaction with a stellar companion . We perform a 3D SPH simulation of a circumbinary disc misaligned by $60^circ$ with respect to the binary orbital plane. The inner disc breaks from the outer regions, precessing as a rigid body, and leading to a complex evolution. As the inner disc precesses, the misalignment angle between the inner and outer discs varies by more than $100^circ$. Different snapshots of the evolution are post-processed with a radiative transfer code, in order to produce observational diagnostics of the process. Even though the simulation was produced for the specific case of a circumbinary disc, most of the observational predictions hold for any disc hosting a precessing inner rim. Synthetic scattered light observations show strong azimuthal asymmetries, where the pattern depends strongly on the misalignment angle between inner and outer disc. The asymmetric illumination of the outer disc leads to azimuthal variations of the temperature structure, in particular in the upper layers, where the cooling time is short. These variations are reflected in asymmetric surface brightness maps of optically thick lines, as CO $J$=3-2. The kinematical information obtained from the gas lines is unique in determining the disc structure. The combination of scattered light images and (sub-)mm lines can distinguish between radial inflow and misaligned inner disc scenarios.
The timescales on which astronomical dust grows remain poorly understood, with important consequences for our understanding of processes like circumstellar disk evolution and planet formation.A number of post-asymptotic giant branch stars are found t o host optically thick, dust- and gas-rich circumstellar discs in Keplerian orbits. These discs exhibit evidence of dust evolution, similar to protoplanetary discs; however since post-AGB discs have substantially shorter lifetimes than protoplanetary discs they may provide new insights on the grain-growth process. We examine a sample of post-AGB stars with discs to determine the FIR and sub-mm spectral index by homogeneously fitting a sample of data from textit{Herschel}, the SMA and the literature. We find that grain growth to at least hundreds of micrometres is ubiquitous in these systems, and that the distribution of spectral indices is more similar to that of protoplanetary discs than debris discs. No correlation is found with the mid-infrared colours of the discs, implying that grain growth occurs independently of the disc structure in post-AGB discs. We infer that grain growth to $sim$mm sizes must occur on timescales $<<10^{5}$ yr, perhaps by orders of magnitude, as the lifetimes of these discs are expected to be $lesssim10^{5}$~yr and all objects have converged to the same state. This growth timescale is short compared to the results of models for protoplanetary discs including fragmentation, and may provide new constraints on the physics of grain growth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا