ترغب بنشر مسار تعليمي؟ اضغط هنا

Irreducible Modules over Finite Simple Lie Pseudoalgebras II. Primitive Pseudoalgebras of Type K

86   0   0.0 ( 0 )
 نشر من قبل Bojko Bakalov
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the algebraic structures that has emerged recently in the study of the operator product expansions of chiral fields in conformal field theory is that of a Lie conformal algebra. A Lie pseudoalgebra is a generalization of the notion of a Lie conformal algebra for which C[partial] is replaced by the universal enveloping algebra H of a finite-dimensional Lie algebra. The finite (i.e., finitely generated over H) simple Lie pseudoalgebras were classified in our previous work. The present paper is the second in our series on representation theory of simple Lie pseudoalgebras. In the first paper we showed that any finite irreducible module over a simple Lie pseudoalgebra of type W or S is either an irreducible tensor module or the kernel of the differential in a member of the pseudo de Rham complex. In the present paper we establish a similar result for Lie pseudoalgebras of type K, with the pseudo de Rham complex replaced by a certain reduction called the contact pseudo de Rham complex. This reduction in the context of contact geometry was discovered by Rumin.

قيم البحث

اقرأ أيضاً

In this paper, we continue the study on toroidal vertex algebras initiated in cite{LTW}, to study concrete toroidal vertex algebras associated to toroidal Lie algebra $L_{r}(hat{frak{g}})=hat{frak{g}}otimes L_r$, where $hat{frak{g}}$ is an untwisted affine Lie algebra and $L_r=$mathbb{C}[t_{1}^{pm 1},ldots,t_{r}^{pm 1}]$. We first construct an $(r+1)$-toroidal vertex algebra $V(T,0)$ and show that the category of restricted $L_{r}(hat{frak{g}})$-modules is canonically isomorphic to that of $V(T,0)$-modules.Let $c$ denote the standard central element of $hat{frak{g}}$ and set $S_c=U(L_r(mathbb{C}c))$. We furthermore study a distinguished subalgebra of $V(T,0)$, denoted by $V(S_c,0)$. We show that (graded) simple quotient toroidal vertex algebras of $V(S_c,0)$ are parametrized by a $mathbb{Z}^r$-graded ring homomorphism $psi:S_crightarrow L_r$ such that Im$psi$ is a $mathbb{Z}^r$-graded simple $S_c$-module. Denote by $L(psi,0}$ the simple $(r+1)$-toroidal vertex algebra of $V(S_c,0)$ associated to $psi$. We determine for which $psi$, $L(psi,0)$ is an integrable $L_{r}(hat{frak{g}})$-module and we then classify irreducible $L(psi,0)$-modules for such a $psi$. For our need, we also obtain various general results.
In this paper we determine the torsion free rank of the group of endotrivial modules for any finite group of Lie type, in both defining and non-defining characteristic. On our way to proving this, we classify the maximal rank $2$ elementary abelian $ ell$-subgroups in any finite group of Lie type, for any prime $ell$, which may be of independent interest.
We classify finite irreducible conformal modules over a class of infinite Lie conformal algebras ${frak {B}}(p)$ of Block type, where $p$ is a nonzero complex number. In particular, we obtain that a finite irreducible conformal module over ${frak {B} }(p)$ may be a nontrivial extension of a finite conformal module over ${frak {Vir}}$ if $p=-1$, where ${frak {Vir}}$ is a Virasoro conformal subalgebra of ${frak {B}}(p)$. As a byproduct, we also obtain the classification of finite irreducible conformal modules over a series of finite Lie conformal algebras ${frak b}(n)$ for $nge1$.
The aim of this paper is to introduce and study Lie algebras and Lie groups over noncommutative rings. For any Lie algebra $gg$ sitting inside an associative algebra $A$ and any associative algebra $FF$ we introduce and study the algebra $(gg,A)(FF)$ , which is the Lie subalgebra of $FF otimes A$ generated by $FF otimes gg$. In many examples $A$ is the universal enveloping algebra of $gg$. Our description of the algebra $(gg,A)(FF)$ has a striking resemblance to the commutator expansions of $FF$ used by M. Kapranov in his approach to noncommutative geometry. To each algebra $(gg, A)(FF)$ we associate a ``noncommutative algebraic group which naturally acts on $(gg,A)(FF)$ by conjugations and conclude the paper with some examples of such groups.
In this paper, a family of non-weight modules over Lie superalgebras $S(q)$ of Block type are studied. Free $U(eta)$-modules of rank $1$ over Ramond-Block algebras and free $U(mathfrak{h})$-modules of rank $2$ over Neveu-Schwarz-Block algebras are co nstructed and classified. Moreover, the sufficient and necessary conditions for such modules to be simple are presented, and their isomorphism classes are also determined. The results cover some existing results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا