ترغب بنشر مسار تعليمي؟ اضغط هنا

Guess your neighbours input: a multipartite non-local game with no quantum advantage

258   0   0.0 ( 0 )
 نشر من قبل Mafalda Almeida
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a multipartite nonlocal game in which each player must guess the input received by his neighbour. We show that quantum correlations do not perform better than classical ones at this game, for any prior distribution of the inputs. There exist, however, input distributions for which general no-signalling correlations can outperform classical and quantum correlations. Some of the Bell inequalities associated to our construction correspond to facets of the local polytope. Thus our multipartite game identifies parts of the boundary between quantum and post-quantum correlations of maximal dimension. These results suggest that quantum correlations might obey a generalization of the usual no-signalling conditions in a multipartite setting.

قيم البحث

اقرأ أيضاً

Non-local Advantage of Quantum Coherence(NAQC) or steerability of local quantum coherence is a strong non-local resource based on coherence complementarity relations. In this work, we provide an upper bound on the number of observers who can independ ently steer the coherence of the observer in the other wing in a scenario where half of an entangled pair of spin-$frac{1}{2}$ particles is shared between a single observer (Bob) in one wing and several observers (Alices) on the other, who can act sequentially and independently of each other. We consider one-parameter dichotomic POVMs for the Alices and mutually unbiased basis in which Bob measures coherence in case of the maximally entangled bipartite qubit state. We show that not more than two Alices can exhibit NAQC when $l_1$-norm of coherence measure is probed, whereas for two other measures of coherence, only one Alice can reveal NAQC within the same framework.
102 - Mazhar Ali 2019
Local quantum uncertainty captures purely quantum correlations excluding their classical counterpart. This measure is quantum discord type, however with the advantage that there is no need to carry out the complicated optimization procedure over meas urements. This measure is initially defined for bipartite quantum systems and a closed formula exists only for $2 otimes d$ systems. We extend the idea of local quantum uncertainty to multi-qubit systems and provide the similar closed formula to compute this measure. We explicitly calculate local quantum uncertainty for various quantum states of three and four qubits, like GHZ state, W state, Dicke state, Cluster state, Singlet state, and Chi state all mixed with white noise. We compute this measure for some other well known three qubit quantum states as well. We show that for all such symmetric states, it is sufficient to apply measurements on any single qubit to compute this measure, whereas in general one has to apply measurements on all parties as local quantum uncertainties for each bipartition can be different for an arbitrary quantum state.
In recent years, the use of information principles to understand quantum correlations has been very successful. Unfortunately, all principles considered so far have a bipartite formulation, but intrinsically multipartite principles, yet to be discove red, are necessary for reproducing quantum correlations. Here, we introduce local orthogonality, an intrinsically multipartite principle stating that events involving different outcomes of the same local measurement must be exclusive, or orthogonal. We prove that it is equivalent to no-signaling in the bipartite scenario but more restrictive for more than two parties. By exploiting this non-equivalence, it is then demonstrated that some bipartite supra-quantum correlations do violate local orthogonality when distributed among several parties. Finally, we show how its multipartite character allows revealing the non-quantumness of correlations for which any bipartite principle fails. We believe that local orthogonality is a crucial ingredient for understanding no-signaling and quantum correlations.
69 - Scott M. Cohen 2016
We provide a method of designing protocols for implementing multipartite quantum measurements when the parties are restricted to local operations and classical communication (LOCC). For each finite integer number of rounds, $r$, the method succeeds i n every case for which an $r$-round protocol exists for the measurement under consideration, and failure of the method has the immediate implication that the measurement under consideration cannot be implemented by LOCC no matter how many rounds of communication are allowed, including when the number of rounds is allowed to be infinite. It turns out that this method shows---often with relative ease---the impossibility by LOCC for a number of examples, including cases where this was not previously known, as well as the example that first demonstrated what has famously become known as nonlocality without entanglement.
The ping-pong protocol adapted for quantum key distribution is studied in the trusted quantum noise scenario, wherein the legitimate parties can add noise locally. For a well-studied attack model, we show how non-unital quantum non-Markovianity of th e added noise can improve the key rate. We also point out that this noise-induced advantage cannot be obtained by Alice and Bob by adding local classical noise to their post-measurement data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا