ﻻ يوجد ملخص باللغة العربية
Particle velocity distribution functions (VDF) in space plasmas often show non Maxwellian suprathermal tails decreasing as a power law of the velocity. Such distributions are well fitted by the so-called Kappa distribution. The presence of such distributions in different space plasmas suggests a universal mechanism for the creation of such suprathermal tails. Different theories have been proposed and are recalled in this review paper. The suprathermal particles have important consequences concerning the acceleration and the temperature that are well evidenced by the kinetic approach where no closure requires the distributions to be nearly Maxwellians. Moreover, the presence of the suprathermal particles take an important role in the wave-particle interactions.
In classical thermodynamics the entropy is an extensive quantity, i.e. the sum of the entropies of two subsystems in equilibrium with each other is equal to the entropy of the full system consisting of the two subsystems. The extensitivity of entropy
Both kinetic instabilities and strong turbulence have potential to impact the behavior of space plasmas. To assess effects of these two processes we compare results from a 3 dimensional particle-in-cell (PIC) simulation of collisionless plasma turbul
Using in situ data, accumulated in the turbulent magnetosheath by the Magnetospheric Multiscale (MMS) Mission, we report a statistical study of magnetic field curvature and discuss its role in the turbulent space plasmas. Consistent with previous sim
Context: The analysis of the thermal part of velocity distribution functions (VDF) is fundamentally important for understanding the kinetic physics that governs the evolution and dynamics of space plasmas. However, calculating the proton core, beam a
The quantum version of Olberts kappa distribution applicable to fermions is obtained. Its construction is straightforward but requires recognition of the differences in the nature of states separated by Fermi momenta. Its complement, the bosonic vers