ﻻ يوجد ملخص باللغة العربية
An essential requirement for the representation of functional patterns in complex neural networks, such as the mammalian cerebral cortex, is the existence of stable regimes of network activation, typically arising from a limited parameter range. In this range of limited sustained activity (LSA), the activity of neural populations in the network persists between the extremes of either quickly dying out or activating the whole network. Hierarchical modular networks were previously found to show a wider parameter range for LSA than random or small-world networks not possessing hierarchical organization or multiple modules. Here we explored how variation in the number of hierarchical levels and modules per level influenced network dynamics and occurrence of LSA. We tested hierarchical configurations of different network sizes, approximating the large-scale networks linking cortical columns in one hemisphere of the rat, cat, or macaque monkey brain. Scaling of the network size affected the number of hierarchical levels and modules in the optimal networks, also depending on whether global edge density or the numbers of connections per node were kept constant. For constant edge density, only few network configurations, possessing an intermediate number of levels and a large number of modules, led to a large range of LSA independent of brain size. For a constant number of node connections, there was a trend for optimal configurations in larger-size networks to possess a larger number of hierarchical levels or more modules. These results may help to explain the trend to greater network complexity apparent in larger brains and may indicate that this complexity is required for maintaining stable levels of neural activation.
It has recently been discovered that single neuron stimulation can impact network dynamics in immature and adult neuronal circuits. Here we report a novel mechanism which can explain in neuronal circuits, at an early stage of development, the peculia
We propose dynamic scaling in temporal networks with heterogeneous activities and memory, and provide a comprehensive picture for the dynamic topologies of such networks, in terms of the modified activity-driven network model [H. Kim textit{et al.},
We consider a sparse random network of excitatory leaky integrate-and-fire neurons with short-term synaptic depression. Furthermore to mimic the dynamics of a brain circuit in its first stages of development we introduce for each neuron correlations
We study the storage of multiple phase-coded patterns as stable dynamical attractors in recurrent neural networks with sparse connectivity. To determine the synaptic strength of existent connections and store the phase-coded patterns, we introduce a
In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of the neural activity, as expected, but it can also promote neural reacti