ترغب بنشر مسار تعليمي؟ اضغط هنا

Mott transition and superconductivity in the strongly correlated organic superconductor $kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}]$Br

190   0   0.0 ( 0 )
 نشر من قبل Takahiko Sasaki
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic field effect on the phase diagram of the organic Mott system $kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Br in which the bandwidth was tuned by the substitution of deuterated molecules was studied by means of the resistivity measurements performed in magnetic fields. The lower critical point of the first-order Mott transition, which ended on the upper critical field $H_{rm c2}$-temperature plane of the superconductivity, was determined experimentally in addition to the previously observed upper critical end point. The lower critical end point moved to a lower temperature with the suppression of $T_{rm c}$ in magnetic fields and the Mott transition recognized so far as the $S$-shaped curve reached $T =$ 0 when $H > H_{rm c2}$ in the end.



قيم البحث

اقرأ أيضاً

145 - K. Sano , T. Sasaki , N. Yoneyama 2010
The effect of disorder on the electronic properties near the Mott transition is studied in an organic superconductor $kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Br, which is systematically irradiated by X-ray. We observe that X-ray irradiation causes Ande rson-type electron localization due to molecular disorder. The resistivity at low temperatures demonstrates variable range hopping conduction with Coulomb interaction. The experimental results show clearly that the electron localization by disorder is enhanced by the Coulomb interaction near the Mott transition.
Systematic investigation of the electronic phase separation on macroscopic scale is reported in the organic Mott system $kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Br. Real space imaging of the phase separation is obtained by means of scanning micro-regio n infrared spectroscopy using the synchrotron radiation. The phase separation appears near the Mott boundary and changes its metal-insulator fraction with the substitution ratio $x$ in $kappa$-[($h$-BEDT-TTF)$_{1-x}$($d$-BEDT-TTF)$_{x}$]$_{2}$Cu[N(CN)$_{2}$]Br, of which band width is controlled by the substitution ratio $x$ between the hydrogenated BEDT-TTF molecule ($h$-BEDT-TTF) and the deuterated one ($d$-BEDT-TTF). The phase separation phenomenon observed in this class of organics is considered on the basis of the strongly correlated electronic phase diagram with the first order Mott transition.
358 - T.Sasaki , H. Oizumi , Y. Honda 2010
The suppression of superconductivity by nonmagnetic disorder is investigated systematically in the organic superconductor $kappa$-(BEDT-TTF)$_2$Cu(NCS)$_2$. We introduce a nonmagnetic disorder arising from molecule substitution in part with deuterate d BEDT-TTF or BMDT-TTF for BEDT-TTF molecules and molecular defects introduced by X-ray irradiation. A quantitative evaluation of the scattering time $tau_{rm dHvA}$ is carried out by de Haas-van Alphen (dHvA) effect measurement. A large reduction in $T_{rm c}$ with a linear dependence on $1/tau_{rm dHvA}$ is found in the small-disorder region below $1/tau_{rm dHvA} simeq$ 1 $times$ 10$^{12}$ s$^{-1}$ in both the BMDT-TTF molecule-substituted and X-ray-irradiated samples. The observed linear relation between $T_{rm c}$ and $1/tau_{rm dHvA}$ is in agreement with the Abrikosov-Gorkov (AG) formula, at least in the small-disorder region. This observation is reasonably consistent with the unconventional superconductivity proposed thus far for the present organic superconductor. A deviation from the AG formula, however, is observed in the large-disorder region above $1/tau_{rm dHvA} simeq$ 1 $times$ 10$^{12}$ s$^{-1}$, which reproduces the previous transport study (J. G. Analytis {it et al.}: Phys. Rev. Lett. {bf 96} (2006) 177002). We present some interpretations of this deviation from the viewpoints of superconductivity and the inherent difficulties in the evaluation of scattering time.
131 - T. Kobayashi , Y. Ihara , Y. Saito 2014
We performed $^{13}$C-NMR experiment and measured spin-lattice relaxation rate divided by temperature $1/T_{1}T$ near the superconducting (SC) transition temperature $T_{c}$ in $kappa$-(BEDT-TTF)$_{2}$Cu[N(CN)$_{2}$]Br ($kappa$-Br salt), and $kappa$- (BEDT-TTF)$_{2}$Cu(NCS)$_{2}$ ($kappa$-NCS salt). We observed the reduction of $1/T_{1}T$ starting at the temperature higher than $T_c$ in $kappa$-Br salt. Microscopic observation of quasi-particle density of states in the fluctuating SC state revealed the effects of short-range Cooper pairs induced in the normal state to the quasi-particle density of states. We also performed systematic measurements in the fields both parallel and perpendicular to the conduction plane in $kappa$-Br and $kappa$-NCS salts, and confirmed that the reduction of $1/T_{1}T$ above $T_{c}$ is observed only in $kappa$-Br salt regardless of the external field orientation.
96 - J. J. McGuire 2001
The interplane optical spectrum of the organic superconductor kappa-(BEDT-TTF)2Cu[N(CN)2]Br was investigated in the frequency range from 40 to 40,000 cm-1. The optical conductivity was obtained by Kramers-Kronig analysis of the reflectance. The absen ce of a Drude peak at low frequency is consistent with incoherent conductivity but in apparent contradiction to the metallic temperature dependence of the DC resistivity. We set an upper limit to the interplane transfer integral of tb = 0.1 meV. A model of defect-assisted interplane transport can account for this discrepancy. We also assign the phonon lines in the conductivity to the asymmetric modes of the ET molecule.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا