ﻻ يوجد ملخص باللغة العربية
Transition-metal substitution in Fe pnictides leading to superconductivity is usually interpreted in terms of carrier doping to the system. We report on a density functional calculation of the local substitute electron density and demonstrate that substitutions like Co and Ni for Fe do not carrier dope but rather are isovalent to Fe. We find that the extra d electrons for Co and Ni are almost totally located within the muffin-tin sphere of the substituted site. We suggest that Co and Ni act more like random scatterers scrambling momentum space and washing out parts of the Fermi surface.
The effects of electron-electron correlations on the low-energy electronic structure and their relationship with unconventional superconductivity are central aspects in the research on the iron-based pnictide superconductors. Here we use soft X-ray a
We report a Fe Kbeta x-ray emission spectroscopy study of local magnetic moments in the rare-earth doped iron pnictide Ca_{1-x}RE_xFe_2As_2 (RE=La, Pr, and Nd). In all samples studied the size of the Fe local moment is found to decrease significantly
Using x-ray absorption and resonant inelastic x-ray scattering, charge dynamics at and near the Fe $L$ edges is investigated in Fe pnictide materials, and contrasted to that measured in other Fe compounds. It is shown that the XAS and RIXS spectra fo
We report a combined valence band photoemission and Auger spectroscopy study of single crystalline Ca(Fe,Co)2As2 and Ba(Fe,TM)2As2 with TM=Ni or Cu. The valence band photoemission data show directly that the TM-states move to higher binding energies
The experimental transport scattering rate was determined for a wide range of optimally doped transition metal-substituted FeAs-based compounds with the ThCr2Si2 (122) crystal structure. The maximum transition temperature Tc for several Ba-, Sr-, and