ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for weak electronic correlations in Fe-pnictides

313   0   0.0 ( 0 )
 نشر من قبل Thomas Devereaux
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using x-ray absorption and resonant inelastic x-ray scattering, charge dynamics at and near the Fe $L$ edges is investigated in Fe pnictide materials, and contrasted to that measured in other Fe compounds. It is shown that the XAS and RIXS spectra for 122 and 1111 Fe pnictides are each qualitatively similar to Fe metal. Cluster diagonalization, multiplet, and density-functional calculations show that Coulomb correlations are much smaller than in the cuprates, highlighting the role of Fe metallicity and strong covalency in these materials. Best agreement with experiment is obtained using Hubbard parameters $Ulesssim 2$eV and $Japprox 0.8$eV.

قيم البحث

اقرأ أيضاً

The effects of electron-electron correlations on the low-energy electronic structure and their relationship with unconventional superconductivity are central aspects in the research on the iron-based pnictide superconductors. Here we use soft X-ray a ngle-resolved photoemission spectroscopy (SX-ARPES) to study how electronic correlations evolve in different chemically substituted iron pnictides. We find that correlations are intrinsically related to the effective filling of the correlated orbitals, rather than to the filling obtained by valence counting. Combined density functional theory (DFT) and dynamical mean-field theory (DMFT) calculations capture these effects, reproducing the experimentally observed trend in the correlation strength. The occupation-driven trend in the electronic correlation reported in our work supports the recently proposed connection between cuprate and pnictides phase diagrams.
93 - J. Li , D. Zhao , Y. P. Wu 2016
In correlated electrons system, quantum melting of electronic crystalline phase often gives rise to many novel electronic phases. In cuprates superconductors, melting the Mott insulating phase with carrier doping leads to a quantum version of liquid crystal phase, the electronic nematicity, which breaks the rotational symmetry and exhibits a tight twist with high-temperature superconductivity. Recently, the electronic nematicity has also been observed in Fe-based superconductors. However, whether it shares a similar scenario with its cuprates counterpart is still elusive. Here, by measuring nuclear magnetic resonance in CsFe2As2, a prototypical Fe-based superconductor perceived to have evolved from a Mott insulating phase at 3d5 configuration, we report anisotropic quadruple broadening effect as a direct result of local rotational symmetry breaking. For the first time, clear connection between the Mott insulating phase and the electronic nematicity can be established and generalized to the Fe-based superconductors. This finding would promote a universal understanding on electronic nematicity and its relation with high-temperature superconductivity.
In Fe pnictide (Pn) superconducting materials, neither Mn- nor Cr- doping to the Fe site induces superconductivity, even though hole carriers are generated. This is in strong contrast with the superconductivity appearing when holes are introduced by alkali metal substitution on the insulating blocking layers. We investigate in detail the effects of Mn doping on magneto-transport properties in Ba(Fe$_{1-x}$Mn$_x$As)$_2$ for elucidating the intrinsic reason. The negative Hall coefficient for $x$ = 0 estimated in the low magnetic field ($B$) regime gradually increases as $x$ increases, and its sign changes to a positive one at $x$ = 0.020. Hall resistivities as well as simultaneous interpretation using the magnetoconductivity tensor including both longitudinal and transverse transport components clarify that minority holes with high mobility are generated by the Mn doping via spin density wave (SDW) transition at low temperatures, while original majority electrons and holes residing in the parabolic-like Fermi surfaces (FSs) of the semimetallic Ba(FeAs)$_2$ are negligibly affected. Present results indicate that the mechanism of hole doping in Ba(Fe$_{1-x}$Mn$_x$As)$_2$ is greatly different from that of the other superconducting FePns family.
The effect of Mn substitution, acting as a magnetic impurity for Fe, on the Dirac cone was investigated in Ba(Fe$_{1-x}$Mn$_x$As)$_2$. Both magnetoresistance and Hall resistivity studies clearly indicate that the cyclotron effective mass ($m^{ast}$) of the Dirac cone is anomalously enhanced at low temperatures by the impurity, although its evolution as a function of carrier number proceeds in a conventional manner at higher temperatures. Kondo-like band renormalization induced by the magnetic impurity scattering is suggested as an explanation for this, and the anomalous mass enhancement of the Dirac fermions is discussed.
115 - F. Hardy , P. Burger , T. Wolf 2010
An extensive calorimetric study of the normal- and superconducting-state properties of Ba(Fe1-xCox)2As2 is presented for 0 < x < 0.2. The normal-state Sommerfeld coefficient increases (decreases) with Co doping for x < 0.06 (x > 0.06), which illustra tes the strong competition between magnetism and superconductivity to monopolize the Fermi surface in the underdoped region and the filling of the hole bands for overdoped Ba(Fe1-xCox)2As2. All superconducting samples exhibit a residual electronic density of states of unknown origin in the zero-temperature limit, which is minimal at optimal doping but increases to the normal-state value in the strongly under- and over-doped regions. The remaining specific heat in the superconducting state is well described using a two-band model with isotropic s-wave superconducting gaps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا