ﻻ يوجد ملخص باللغة العربية
We report that Bi$_2$Se$_3$ thin films can be epitaxially grown on SrTiO$_{3}$ substrates, which allow for very large tunablity in carrier density with a back-gate. The observed low field magnetoconductivity due to weak anti-localization (WAL) has a very weak gate-voltage dependence unless the electron density is reduced to very low values. Such a transition in WAL is correlated with unusual changes in longitudinal and Hall resistivities. Our results suggest much suppressed bulk conductivity at large negative gate-voltages and a possible role of surface states in the WAL phenomena. This work may pave a way for realizing three-dimensional topological insulators at ambient conditions.
We show how the weak field magneto-conductance can be used as a tool to characterize epitaxial graphene samples grown from the C or the Si face of Silicon Carbide, with mobilities ranging from 120 to 12000 cm^2/(V.s). Depending on the growth conditio
Many proposed experiments involving topological insulators (TIs) require spatial control over time-reversal symmetry and chemical potential. We demonstrate reconfigurable micron-scale optical control of both magnetization (which breaks time-reversal
In this theoretical study, we explore the manner in which the quantum correction due to weak localization is suppressed in weakly-disordered graphene, when it is subjected to the application of a non-zero voltage. Using a nonequilibrium Green functio
The spin chemical potential characterizes the tendency of spins to diffuse. Probing the spin chemical potential could provide insight into materials such as magnetic insulators and spin liquids and aid optimization of spintronic devices. Here, we int
Low-field magnetoresistance is ubiquitous in low-dimensional metallic systems with high resistivity and well understood as arising due to quantum interference on self-intersecting diffusive trajectories. We have found that in graphene this weak-local