ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep level transient spectroscopy study for the development of ion-implanted silicon field-effect transistors for spin-dependent transport

47   0   0.0 ( 0 )
 نشر من قبل Brett Johnson Dr
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A deep level transient spectroscopy (DLTS) study of defects created by low-fluence, low-energy ion implantation for development of ion-implanted silicon field-effect transistors for spin-dependent transport experiments is presented. Standard annealing strategies are considered to activate the implanted dopants and repair the implantation damage in test metal-oxide-semiconductor (MOS) capacitors. Fixed oxide charge, interface trapped charge and the role of minority carriers in DLTS are investigated. A furnace anneal at 950 $rm ^{o}$C was found to activate the dopants but did not repair the implantation damage as efficiently as a 1000 $rm ^{o}$C rapid thermal anneal. No evidence of bulk traps was observed after either of these anneals. The ion- implanted spin-dependent transport device is shown to have expected characteristics using the processing strategy determined in this study.

قيم البحث

اقرأ أيضاً

Deep level transient spectroscopy (DLTS) is used extensively to study defects in semiconductors. We demonstrate that great care should be exercised in interpreting activation energies extracted from DLTS as ionization energies. We show how first-prin ciples calculations of thermodynamic transition levels, temperature effects of ionization energies, and nonradiative capture coefficients can be used to accurately determine actual activation energies that can be directly compared with DLTS. Our analysis is illustrated with hybrid functional calculations for two important defects in GaN that have similar thermodynamic transition levels, and shows that the activation energy extracted from DLTS includes a capture barrier that is temperature dependent, unique to each defect, and in some cases large in comparison to the ionization energy. By calculating quantities that can be directly compared with experiment, first-principles calculations thus offer powerful leverage in identifying the microscopic origin of defects detected in DLTS.
58 - C. C. Lo , J. Bokor , T. Schenkel 2007
We report measurements of spin-dependent scattering of conduction electrons by neutral donors in an accumulation-mode field-effect transistor formed in isotopically enriched silicon. Spin-dependent scattering was detected using electrically detected magnetic resonance where the spectra show resonant changes in the source-drain voltage for conduction electrons and electrons bound to donors. We discuss the utilization of spin-dependent scattering as a mechanism for the readout of donor spin-states in silicon based quantum computers.
In this paper we report the effect of hydrogen on the structural properties of AISI-H13 steel nitrogen-implanted samples in low oxygen partial pressure atmosphere. The samples were implanted in a high vacuum chamber by using a broad ion beam source. The H2+/N2+ ion composition of the beam was varied and the surface composition studied in situ by photoemission electron spectroscopy (XPS). The samples were also ex situ analyzed by X-ray diffraction and scanning electron microscopy (SEM), including energy-dispersive spectroscopy measurements. It was found that hydrogen has the effect of modifying the amount of retained nitrogen at the surfaces. This result shows that hydrogen plays a role beyond the well-established effect of oxygen etching in industrial machines where vacuum is relatively less well controlled. Finally, an optimum concentration of 20 to 40% [H2]/[H2+N2] ion beam composition was determined to obtain maximum nitrogen incorporation on the metal surface.
105 - Yan Zhang , E. E. Mendez , 2011
We have investigated the low-frequency 1/f noise of both suspended and on-substrate graphene field-effect transistors and its dependence on gate voltage, in the temperature range between 300K and 30K. We have found that the noise amplitude away from the Dirac point can be described by a generalized Hooges relation in which the Hooge parameter {alpha}H is not constant but decreases monotonically with the devices mobility, with a universal dependence that is sample and temperature independent. The value of {alpha}H is also affected by the dynamics of disorder, which is not reflected in the DC transport characteristics and varies with sample and temperature. We attribute the diverse behavior of gate voltage dependence of the noise amplitude to the relative contributions from various scattering mechanisms, and to potential fluctuations near the Dirac point caused by charge carrier inhomogeneity. The higher carrier mobility of suspended graphene devices accounts for values of 1/f noise significantly lower than those observed in on-substrate graphene devices and most traditional electronic materials.
Full investigation of deep defect states and impurities in wide-bandgap materials by employing commercial transient capacitance spectroscopy is a challenge, demanding very high temperatures. Therefore, a high-temperature deep-level transient spectros copy (HT-DLTS) system was developed for measurements up to 1100 K. The upper limit of the temperature range allows for the study of deep defects and trap centers in the bandgap, deeper than previously reported by DLTS characterization in any material. Performance of the system was tested by conducting measurements on the well-known intrinsic defects in n-type 4H-SiC in the temperature range 300-950 K. Experimental observations performed on 4H-SiC Schottky diodes were in good agreement with the literatures. However, the DLTS measurements were restricted by the operation and quality of the electrodes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا