ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice structure and magnetization of LaCoO3 thin films

432   0   0.0 ( 0 )
 نشر من قبل Diana Rata
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the structure and magnetic properties of thin films of the LaCoO$_{3}$ compound. Thin films are deposited by pulsed laser deposition on various substrates in order to tune the strain from compressive to tensile. Single-phase (001) oriented LaCoO$_{3}$ layers were grown on all substrates despite large misfits. The tetragonal distortion of the films covers a wide range from -2% to 2.8%. Our LaCoO$_{3}$ films are ferromagnetic with Curie temperature around 85 K, contrary to the bulk. The total magnetic moment is below $1mu_{B}$/Co$^{3+}$, a value relatively small for an exited spin-state of the Co$^{3+}$ ions, but comparable to values reported in literature. A correlation of strain states and magnetic moment of Co$^{3+}$ ions in LaCoO$_{3}$ thin films is observed.



قيم البحث

اقرأ أيضاً

The magnetization of ferromagnetic LaCoO3 films grown epitaxially on piezoelectric substrates has been found to systematically decrease with the reduction of tensile strain. The magnetization change induced by the reversible strain variation reveals an increase of the Co magnetic moment with tensile strain. The biaxial strain dependence of the Curie temperature is estimated to be below 4K/% in the as-grown tensile strain state of our films. This is in agreement with results from statically strained films on various substrates.
114 - D. Fuchs , L. Dieterle , E. Arac 2008
Epitaxially strained LaCoO3 (LCO) thin films were grown with different film thickness, t, on (001) oriented (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 (LSAT) substrates. After initial pseudomorphic growth the films start to relieve their strain partly by the for mation of periodic nano-twins with twin planes predominantly along the <100> direction. Nano-twinning occurs already at the initial stage of growth, albeit in a more moderate way. Pseudomorphic grains, on the other hand, still grow up to a thickness of at least several tenths of nanometers. The twinning is attributed to the symmetry lowering of the epitaxially strained pseudo-tetragonal structure towards the relaxed rhombohedral structure of bulk LCO. However, the unit-cell volume of the pseudo-tetragonal structure is found to be nearly constant over a very large range of t. Only films with t > 130 nm show a significant relaxation of the lattice parameters towards values comparable to those of bulk LCO.
Bulk La_wCoO3 particles with w=1.1, 1.0, 0.9, 0.8, and 0.7 were synthesized using starting materials with varying molar ratios of La2O3 and Co3O4. The resulting particles are characterized as LaCoO3 crystals interfaced with a crystalline Co3O4 phase. X-ray and neutron scattering data show little effect on the average structure and lattice parameters of the LaCoO3 phase resulting from the Co3O4 content, but magnetization data indicate that the amount of Co3O4 strongly affects the ferromagnetic ordering at the interfaces below T_C ~89K. In addition to ferromagnetic long-range order, LaCoO3 exhibits antiferromagnetic behavior with an unusual temperature dependence. The magnetization for fields 20 Oe < H < 5 kOe is fit to a combination of a power law ((T-T_C)/T_C)^beta behavior representing the ferromagnetic long-range order and sigmoid-convoluted Curie-Weiss-like behavior representing the antiferromagnetic behavior. The critical exponent beta=0.63 +- 0.02 is consistent with 2D (surface) ordering. Increased Co3O4 correlates well to increased ferromagnetism. The weakening of the antiferromagnetism below T ~ 40K is a consequence of the lattice reaching a critical rhombahedral distortion as T is decreased for core regions far from the Co3O4 interfaces. We introduce a model that describes the ferromagnetic behavior of the interface regions and the unusual antiferromagnetism of the core regions.
Using real-time spectroscopic ellipsometry, we directly observed a reversible lattice and electronic structure evolution in SrCoOx (x = 2.5 - 3) epitaxial thin films. Drastically different electronic ground states, which are extremely susceptible to the oxygen content x, are found in the two topotactic phases, i.e. the brownmillerite SrCoO2.5 and the perovskite SrCoO3. First principles calculations confirmed substantial differences in the electronic structure, including a metal-insulator transition, which originates from the modification in the Co valence states and crystallographic structures. More interestingly, the two phases can be reversibly controlled by changing the ambient pressure at greatly reduced temperatures. Our finding provides an important pathway to understanding the novel oxygen-content-dependent phase transition uniquely found in multivalent transition metal oxides.
The enigma of the emergent ferromagnetic state in tensile-strained LaCoO3 thin films remains to be explored because of the lack of a well agreed explanation. The direct magnetic imaging technique using a low-temperature magnetic force microscope (MFM ) is critical to reveal new aspects of the ferromagnetism by investigating the lateral magnetic phase distribution. Here we show the experimental demonstration of the rare halved occupation of the ferromagnetic state in tensile-strained LaCoO3 thin films on SrTiO3 substrates using the MFM. The films have uniformly strained lattice structure and minimal oxygen vacancies (less than 2%) beyond the measurement limit. It is found that percolated ferromagnetic regions with typical sizes between 100 nm and 200 nm occupy about 50% of the entire film, even down to the lowest achievable temperature of 4.5 K and up to the largest magnetic field of 13.4 T. Preformed ferromagnetic droplets were still observed when the temperature is 20 K above the Curie temperature indicating the existence of possible Griffiths phase. Our study demonstrated a sub-micron level phase separation in high quality LaCoO3 thin films, which has substantial implications in revealing the intrinsic nature of the emergent ferromagnetism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا