ﻻ يوجد ملخص باللغة العربية
Epitaxially strained LaCoO3 (LCO) thin films were grown with different film thickness, t, on (001) oriented (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 (LSAT) substrates. After initial pseudomorphic growth the films start to relieve their strain partly by the formation of periodic nano-twins with twin planes predominantly along the <100> direction. Nano-twinning occurs already at the initial stage of growth, albeit in a more moderate way. Pseudomorphic grains, on the other hand, still grow up to a thickness of at least several tenths of nanometers. The twinning is attributed to the symmetry lowering of the epitaxially strained pseudo-tetragonal structure towards the relaxed rhombohedral structure of bulk LCO. However, the unit-cell volume of the pseudo-tetragonal structure is found to be nearly constant over a very large range of t. Only films with t > 130 nm show a significant relaxation of the lattice parameters towards values comparable to those of bulk LCO.
We investigate the structure and magnetic properties of thin films of the LaCoO$_{3}$ compound. Thin films are deposited by pulsed laser deposition on various substrates in order to tune the strain from compressive to tensile. Single-phase (001) orie
We investigate the spin state of LaCoO3 using state-of-the-art photoemission spectroscopy and ab initio band structure calculations. The GGA+U calculations provide a good description of the ground state for the experimentally estimated value of elect
Electronic structure of the three-dimensional colossal magnetoresistive perovskite La1-xSrxMnO3 has been established using soft-X-ray ARPES with its intrinsically sharp definition of three-dimensional electron momentum. The experimental results show
LaCoO3 (LCO) nanoparticles were synthesized and their magnetic and structural properties were examined using SQUID magnetometery and neutron diffraction. The nanoparticles exhibit ferromagnetic long-range order beginning at T_C approximately 87K that
Using pulsed laser deposition and a unique fast quenching method, we have prepared SrCoOx epitaxial films on SiTiO3 substrates. As electrochemical oxidation increases the oxygen content from x = 2.75 to 3.0, the films tend to favor the discrete magne