ﻻ يوجد ملخص باللغة العربية
Very recently Girardeau and Minguzzi [arXiv:0807.3366v2, Phys. Rev. A 79, 033610 (2009)] have studied an impurity in a one-dimensional gas of hard-core bosons. In particular they deal with the general case where the mass of the impurity is different from the mass of the bosons and the impurity-boson interaction is not necessarily infinitely repulsive. We show that one of their initial step is erroneous, contradicting both physical intuition and known exact results. Their results in the general case apply only actually when the mass of the impurity is infinite.
The low-lying eigenstates of a one-dimensional (1D) system of many impenetrable point bosons and one moving impurity particle with repulsive zero-range impurity-boson interaction are found for all values of the impurity-boson mass ratio and coupling
In their Comment [1] Giraud and Combescot point out that the contribution to the impurity-boson distribution function $rho_{bi}(x-y)$ of a term we dropped is not negligible, rather than being negligible in the thermodynamic limit as we had conjecture
Using the exact $N$-particle ground state wave function for a one-dimensional gas of hard-core bosons in a harmonic trap we develop an algorithm to compute the reduced single-particle density matrix and corresponding momentum distribution. Accurate n
By means of time-dependent density-matrix renormalization-group (TDMRG) we are able to follow the real-time dynamics of a single impurity embedded in a one-dimensional bath of interacting bosons. We focus on the impurity breathing mode, which is foun
We consider a trapped atomic ensemble of interacting bosons in the presence of a single trapped ion in a quasi one dimensional geometry. Our study is carried out by means of the newly developed multilayer-multiconfiguration time-dependent Hartree met