ترغب بنشر مسار تعليمي؟ اضغط هنا

Motion of an impurity particle in an ultracold quasi-one-dimensional gas of hard-core bosons

123   0   0.0 ( 0 )
 نشر من قبل Marvin D. Girardeau
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The low-lying eigenstates of a one-dimensional (1D) system of many impenetrable point bosons and one moving impurity particle with repulsive zero-range impurity-boson interaction are found for all values of the impurity-boson mass ratio and coupling constant. The moving entity is a polaron-like composite object consisting of the impurity clothed by a co-moving gray soliton. The special case with impurity-boson interaction of point hard-core form and impurity-boson mass ratio $m_i/m$ unity is first solved exactly as a special case of a previous Fermi-Bose (FB) mapping treatment of soluble 1D Bose-Fermi mixture problems. Then a more general treatment is given using second quantization for the bosons and the second-quantized form of the FB mapping, eliminating the impurity degrees of freedom by a Lee-Low-Pines canonical transformation. This yields the exact solution for arbitrary $m_i/m$ and impurity-boson interaction strength.



قيم البحث

اقرأ أيضاً

106 - S. Giraud , R. Combescot 2010
Very recently Girardeau and Minguzzi [arXiv:0807.3366v2, Phys. Rev. A 79, 033610 (2009)] have studied an impurity in a one-dimensional gas of hard-core bosons. In particular they deal with the general case where the mass of the impurity is different from the mass of the bosons and the impurity-boson interaction is not necessarily infinitely repulsive. We show that one of their initial step is erroneous, contradicting both physical intuition and known exact results. Their results in the general case apply only actually when the mass of the impurity is infinite.
In their Comment [1] Giraud and Combescot point out that the contribution to the impurity-boson distribution function $rho_{bi}(x-y)$ of a term we dropped is not negligible, rather than being negligible in the thermodynamic limit as we had conjecture d. We now agree with them, but nevertheless our results for $rho_{bi}$ are highly accurate for large impurity-boson mass ratio $m_i/m$ and remain qualitatively correct for all values of $m_i/m$ and all values of the boson-impurity coupling constant.
We investigate the propagation of density-wave packets in a Bose-Hubbard model using the adaptive time-dependent density-matrix renormalization group method. We discuss the decay of the amplitude with time and the dependence of the velocity on densit y, interaction strength and the height of the perturbation in a numerically exact way, covering arbitrary interactions and amplitudes of the perturbation. In addition, we investigate the effect of self-steepening due to the amplitude dependence of the velocity and discuss the possibilities for an experimental detection of the moving wave packet in time of flight pictures. By comparing the sound velocity to theoretical predictions, we determine the limits of a Gross-Pitaevskii or Bogoliubov type description and the regime where repulsive one-dimensional Bose gases exhibit fermionic behaviour.
We consider a longitudinal expansion of a one-dimensional gas of hard-core bosons suddenly released from a trap. We show that the broken translational invariance in the initial state of the system is encoded in correlations between the bosonic occupa tion numbers in the momentum space. The correlations are protected by the integrability and exhibit no relaxation during the expansion.
We demonstrate that virtual excitations of higher radial modes in an atomic Bose gas in a tightly confining waveguide result in effective three-body collisions that violate integrability in this quasi-one-dimensional quantum system and give rise to t hermalization. The estimated thermalization rates are consistent with recent experimental results in quasi-1D dynamics of ultracold atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا