ﻻ يوجد ملخص باللغة العربية
The low-lying eigenstates of a one-dimensional (1D) system of many impenetrable point bosons and one moving impurity particle with repulsive zero-range impurity-boson interaction are found for all values of the impurity-boson mass ratio and coupling constant. The moving entity is a polaron-like composite object consisting of the impurity clothed by a co-moving gray soliton. The special case with impurity-boson interaction of point hard-core form and impurity-boson mass ratio $m_i/m$ unity is first solved exactly as a special case of a previous Fermi-Bose (FB) mapping treatment of soluble 1D Bose-Fermi mixture problems. Then a more general treatment is given using second quantization for the bosons and the second-quantized form of the FB mapping, eliminating the impurity degrees of freedom by a Lee-Low-Pines canonical transformation. This yields the exact solution for arbitrary $m_i/m$ and impurity-boson interaction strength.
Very recently Girardeau and Minguzzi [arXiv:0807.3366v2, Phys. Rev. A 79, 033610 (2009)] have studied an impurity in a one-dimensional gas of hard-core bosons. In particular they deal with the general case where the mass of the impurity is different
In their Comment [1] Giraud and Combescot point out that the contribution to the impurity-boson distribution function $rho_{bi}(x-y)$ of a term we dropped is not negligible, rather than being negligible in the thermodynamic limit as we had conjecture
We investigate the propagation of density-wave packets in a Bose-Hubbard model using the adaptive time-dependent density-matrix renormalization group method. We discuss the decay of the amplitude with time and the dependence of the velocity on densit
We consider a longitudinal expansion of a one-dimensional gas of hard-core bosons suddenly released from a trap. We show that the broken translational invariance in the initial state of the system is encoded in correlations between the bosonic occupa
We demonstrate that virtual excitations of higher radial modes in an atomic Bose gas in a tightly confining waveguide result in effective three-body collisions that violate integrability in this quasi-one-dimensional quantum system and give rise to t