ترغب بنشر مسار تعليمي؟ اضغط هنا

A sub-resolution multiphase interstellar medium model of star formation and SNe energy feedback

96   0   0.0 ( 0 )
 نشر من قبل Giuseppe Murante
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Giuseppe Murante




اسأل ChatGPT حول البحث

We present a new multi-phase sub-resolution model for star formation and feedback in SPH numerical simulations of galaxy formation. Our model, called MUPPI (MUlti-Phase Particle Integrator), describes each gas particle as a multi-phase system, with cold and hot gas phases, coexisting in pressure equilibrium, and a stellar component. Cooling of the hot tenuous gas phase feeds the cold gas phase. Stars are formed out of molecular gas with a given efficiency, which scales with the dynamical time of the cold phase. Our prescription for star formation is not based on imposing the Schmidt-Kennicutt relation, which is instead naturally produced by MUPPI. Energy from supernova explosions is deposited partly into the hot phase of the gas particles, and partly to that of neighboring particles. Mass and energy flows among the different phases of each particle are described by a set of ordinary differential equations which we explicitly integrate for each gas particle, instead of relying on equilibrium solutions. This system of equations also includes the response of the multi-phase structure to energy changes associated to the thermodynamics of the gas. We apply our model to two isolated disk galaxy simulations and two spherical cooling flows. MUPPI is able to reproduce the Schmidt-Kennicutt relation for disc galaxies. It also reproduces the basic properties of the inter-stellar medium in disc galaxies, the surface densities of cold and molecular gas, of stars and of star formation rate, the vertical velocity dispersion of cold clouds and the flows connected to the galactic fountains. Quite remarkably, MUPPI also provides efficient stellar feedback without the need to include a scheme of kinetic energy feedback. [abridged]

قيم البحث

اقرأ أيضاً

121 - Gerhard Hensler 2010
Supernovae are the most energetic stellar events and influence the interstellar medium by their gasdynamics and energetics. By this, both also affect the star formation positively and negatively. In this paper, we review the development of the comple xity of investigations aiming at understanding the interchange between supernovae and their released hot gas with the star-forming molecular clouds. Commencing from analytical studies the paper advances to numerical models of supernova feedback from superbubble scales to galaxy structure. We also discuss parametrizations of star-formation and supernova-energy transfer efficiencies. Since evolutionary models from the interstellar medium to galaxies are numerous and apply multiple recipes of these parameters, only a representative selection of studies can be discussed here.
We use simulations with realistic models for stellar feedback to study galaxy mergers. These high resolution (1 pc) simulations follow formation and destruction of individual GMCs and star clusters. The final starburst is dominated by in situ star fo rmation, fueled by gas which flows inwards due to global torques. The resulting high gas density results in rapid star formation. The gas is self gravitating, and forms massive (~10^10 M_sun) GMCs and subsequent super-starclusters (masses up to 10^8 M_sun). However, in contrast to some recent simulations, the bulk of new stars which eventually form the central bulge are not born in superclusters which then sink to the center of the galaxy, because feedback efficiently disperses GMCs after they turn several percent of their mass into stars. Most of the mass that reaches the nucleus does so in the form of gas. The Kennicutt-Schmidt law emerges naturally as a consequence of feedback balancing gravitational collapse, independent of the small-scale star formation microphysics. The same mechanisms that drive this relation in isolated galaxies, in particular radiation pressure from IR photons, extend over seven decades in SFR to regulate star formation in the most extreme starbursts (densities >10^4 M_sun/pc^2). Feedback also drives super-winds with large mass loss rates; but a significant fraction of the wind material falls back onto the disks at later times, leading to higher post-starburst SFRs in the presence of stellar feedback. Strong AGN feedback is required to explain sharp cutoffs in star formation rate. We compare the predicted relic structure, mass profile, morphology, and efficiency of disk survival to simulations which do not explicitly resolve GMCs or feedback. Global galaxy properties are similar, but sub-galactic properties and star formation rates can differ significantly.
Synthetic observations are playing an increasingly important role across astrophysics, both for interpreting real observations and also for making meaningful predictions from models. In this review, we provide an overview of methods and tools used fo r generating, manipulating and analysing synthetic observations and their application to problems involving star formation and the interstellar medium. We also discuss some possible directions for future research using synthetic observations.
62 - M. S. Bothwell 2009
We present a demographic analysis of integrated star formation and gas properties for a sample of galaxies representative of the overall population at z~0. This research was undertaken in order to characterise the nature of star formation and interst ellar medium behaviour in the local universe, and test the extent to which global star formation rates can be seen as dependent on the interstellar gas content. Archival 21 cm derived HI data are compiled from the literature, and are combined with CO (J=1-0) derived H_2 masses to calculate and characterise the total gas content for a large sample of local galaxies. The distribution in stellar mass-normalised HI content is found to exhibit the noted characteristic transition at stellar masses of ~3x10^10 M_sun, turning off towards low values, but no such transition is observed in the equivalent distribution of molecular gas. H-alpha based star formation rates and specific star formation rates are also compiled for a large (1110) sample of local galaxies. We confirm two transitions as found in previous work: a turnover towards low SFRs at high luminosities, indicative of the quenching of SF characteristic of the red sequence; and a broadening of the SF distribution in low-luminosity dwarf galaxies, again to extremely low SFRs of < 0.001 M_sun/yr. However, a new finding is that while the upper luminosity transition is mirrored by the turn over in HI content, suggesting that the low SFRs of the red sequence result from a lack of available gas supply, the transition towards a large spread of SFRs in the least luminous dwarf galaxies is not matched by a prominent increase in scatter in gas content. Possible mass-dependent quenching mechanisms are discussed, along with speculations that in low mass galaxies, the H-alpha luminosity may not faithfully trace the SFR.
301 - S Paron 2018
The interstellar medium (ISM) is a very complex medium which contains the matter needed to form stars and planets. The ISM is in permanent interaction with radiation, turbulence, magnetic and gravitational fields, and accelerated particles. Everythin g that happens in this medium has consequences on the dynamics and evolution of the Galaxy, resulting the link that relates the stellar scale with the galactic one. Thus, the study of the ISM is crucial to advance in the knowledge of stellar and galactic astrophysics. In this article I present a summary of what we know about the physics and chemistry of this medium, giving an special emphasis on star formation, and how the processes related to the stars birth and evolution interrelate with the environment that surrounds them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا