ترغب بنشر مسار تعليمي؟ اضغط هنا

Superfluidity of a dipolar Fermi gas in 2D optical lattices bilayer

154   0   0.0 ( 0 )
 نشر من قبل Arturo Camacho
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a model for addressing the superfluidity of two different Fermi species confined in a bilayer geometry of square optical lattices. The fermions are assumed to be molecules with interlayer s-wave interactions, whose dipole moments are oriented perpendicularly to the layers. Using functional integral techniques we investigate the BCS-like state induced in the bilayer at finite temperatures. In particular, we determine the critical temperature as a function of the coupling strength between molecules in different layers and of the interlayer spacing. By means of Ginzburg-Landau theory we calculate the superfluid density. We also study the dimerized BEC phase through the Berezinskii-Kosterlitz-Thouless transition, where the effective mass leads to identify the crossover from BCS to BEC regimes. The possibility of tuning the effective mass as a direct consequence of the lattice confinement, allows us to suggest a range of values of the interlayer spacing, which would enable observing this superfluidity within current experimental conditions.



قيم البحث

اقرأ أيضاً

310 - Bo Liu , Xiaopeng Li , Lan Yin 2014
Weyl superconductivity or superfluidity, a fascinating topological state of matter, features novel phenomena such as emergent Weyl fermionic excitations and anomalies. Here we report that an anisotropic Weyl superfluid state can arise as a low temper ature stable phase in a 3D dipolar Fermi gas. A crucial ingredient of our model is a rotating external field that generates a direction-dependent two-body effective attraction. Experimental signatures are predicted for cold gases in radio-frequency spectroscopy. The finite temperature phase diagram of this system is studied and the transition temperature of the Weyl superfluidity is found to be within the experimental scope for atomic dipolar Fermi gases.
We investigate the superfluid behavior of a two-dimensional (2D) Bose gas of $^{87}$Rb atoms using classical field dynamics. In the experiment by R. Desbuquois textit{et al.}, Nat. Phys. textbf{8}, 645 (2012), a 2D quasicondensate in a trap is stirre d by a blue-detuned laser beam along a circular path around the trap center. Here, we study this experiment from a theoretical perspective. The heating induced by stirring increases rapidly above a velocity $v_c$, which we define as the critical velocity. We identify the superfluid, the crossover, and the thermal regime by a finite, a sharply decreasing, and a vanishing critical velocity, respectively. We demonstrate that the onset of heating occurs due to the creation of vortex-antivortex pairs. A direct comparison of our numerical results to the experimental ones shows good agreement, if a systematic shift of the critical phase-space density is included. We relate this shift to the absence of thermal equilibrium between the condensate and the thermal wings, which were used in the experiment to extract the temperature. We expand on this observation by studying the full relaxation dynamics between the condensate and the thermal cloud.
We observe interband transitions mediated by the dipole-dipole interaction for an array of 1D quantum gases of chromium atoms, trapped in a 2D optical lattice. Interband transitions occur when dipolar relaxation releases an energy which matches or ov ercomes the lattice band gap. We analyze the role of tunneling in higher lattice bands on this process. We compare the experimental dipolar relaxation rate with a calculation based on a multiple Fermi Golden Rule approach, when the lattice sites are symmetric, and the magnetic field is parallel to the lattice axis. We also show that an almost complete suppression of dipolar relaxation is obtained below a magnetic field threshold set by the depth of the lattice: 1D quantum gases in an excited Zeeman state then become metastable.
190 - K. Aikawa , S. Baier , A. Frisch 2014
The deformation of a Fermi surface is a fundamental phenomenon leading to a plethora of exotic quantum phases. Understanding these phases, which play crucial roles in a wealth of systems, is a major challenge in atomic and condensed-matter physics. H ere, we report on the observation of a Fermi surface deformation in a degenerate dipolar Fermi gas of erbium atoms. The deformation is caused by the interplay between strong magnetic dipole-dipole interaction and the Pauli exclusion principle. We demonstrate the many-body nature of the effect and its tunability with the Fermi energy. Our observation provides basis for future studies on anisotropic many-body phenomena in normal and superfluid phases.
282 - Zhen-Kai Lu , S.I. Matveenko , 2013
We study zero sound in a weakly interacting 2D gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean field and many-body (beyond mean field) effects, and the anisotropy of the sound velocity is the same as the one of the Fermi velocity. The damping of zero sound modes can be much slower than that of quasiparticle excitations of the same energy. One thus has wide possibilities for the observation of zero sound modes in experiments with 2D fermionic dipoles, although the zero sound peak in the structure function is very close to the particle-hole continuum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا