ترغب بنشر مسار تعليمي؟ اضغط هنا

High intensity tapping regime in a frustrated lattice gas model of granular compaction

465   0   0.0 ( 0 )
 نشر من قبل Luis Ariel Pugnaloni
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the frame of a well established lattice gas model for granular compaction, we investigate the high intensity tapping regime where a pile expands significantly during external excitation. We find that this model shows the same general trends as more sophisticated models based on molecular dynamic type simulations. In particular, a minimum in packing fraction as a function of tapping strength is observed in the reversible branch of an annealed tapping protocol.



قيم البحث

اقرأ أيضاً

The kinetic energy of a freely cooling granular gas decreases as a power law $t^{-theta}$ at large times $t$. Two theoretical conjectures exist for the exponent $theta$. One based on ballistic aggregation of compact spherical aggregates predicts $the ta= 2d/(d+2)$ in $d$ dimensions. The other based on Burgers equation describing anisotropic, extended clusters predicts $theta=d/2$ when $2le d le 4$. We do extensive simulations in three dimensions to find that while $theta$ is as predicted by ballistic aggregation, the cluster statistics and velocity distribution differ from it. Thus, the freely cooling granular gas fits to neither the ballistic aggregation or a Burgers equation description.
229 - Paula A. Gago 2020
We explore the compaction dynamics of a granular pile after a hard quench from a liquid into the glassy regime. First, we establish that the otherwise athermal granular pile during tapping exhibits annealing behavior comparable to glassy polymer or c olloidal systems. Like those other systems, the pile undergoes a glass transition and freezes into different non-equilibrium glassy states at low agitation for different annealing speeds, starting from the same initial equilibrium state at high agitation. Then, we quench the system instantaneously from the highly-agitated state to below the glass transition regime to study the ensuing aging dynamics. In this classical aging protocol, the density increases (i.e., the potential energy of the pile decreases) logarithmically over several decades in time. Instead of system-wide, thermodynamic measures, here we identify the intermittent, irreversible events (quakes) that actually drive the glassy relaxation process. We find that the event rate decelerates hyperbolically, which explains the observed increase in density when the integrated contribution to the downward displacements is evaluated. We argue that such a hyperbolically decelerating event rate is consistent with a log-Poisson process, also found as a universal feature of aging in many thermal glasses.
We analyze the dynamics of an active tracer particle embedded in a thermal lattice gas. All particles are subject to exclusion up to third nearest neighbors on the square lattice, which leads to slow dynamics at high densities. For the case with no r otational diffusion of the tracer, we derive an analytical expression for the resulting drift velocity v of the tracer in terms of non-equilibrium density correlations involving the tracer particle and its neighbors, which we verify using numerical simulations. We show that the properties of the passive system alone do not adequately describe even this simple system of a single non-rotating active tracer. For large activity and low density, we develop an approximation for v. For the case where the tracer undergoes rotational diffusion independent of its neighbors, we relate its diffusion coefficient to the thermal diffusion coefficient and v. Finally we study dynamics where the rotation of the tracer is limited by the presence of neighboring particles. We find that the effect of this rotational locking may be quantitatively described in terms of a reduction of the rotation rate.
We perform three-dimensional simulations of a granular jet impact for both frictional and frictionless grains. Small shear stress observed in the experiment[X. Cheng et al., Phys. Rev. Lett. 99, 188001 (2007) ] is reproduced through our simulation. H owever, the fluid state after the impact is far from a perfect fluid, and thus, similarity between granular jets and quark gluon plasma is superficial, because the observed viscosity is finite and its value is consistent with the prediction of the kinetic theory.
185 - Vicente Garzo , Ricardo Brito , 2020
The Navier--Stokes transport coefficients for a model of a confined quasi-two-dimensional granular binary mixture of inelastic hard spheres are determined from the Boltzmann kinetic equation. A normal or hydrodynamic solution to the Boltzmann equatio n is obtained via the Chapman--Enskog method for states near the local version of the homogeneous time-dependent state. The mass, momentum, and heat fluxes are determined to first order in the spatial gradients of the hydrodynamic fields, and the associated transport coefficients are identified. As expected, they are given in terms of the solutions of a set of coupled linear integral equations. In addition, in contrast to previous results obtained for low-density granular mixtures, there are also nonzero contributions to the first-order approximations to the partial temperatures $T_i^{(1)}$ and the cooling rate $zeta^{(1)}$. Explicit forms for the diffusion transport coefficients, the shear viscosity coefficient, and the quantities $T_i^{(1)}$ and $zeta^{(1)}$ are obtained by assuming the steady-state conditions and by considering the leading terms in a Sonine polynomial expansion. The above transport coefficients are given in terms of the coefficients of restitution, concentration, and the masses and diameters of the components of the mixture. The results apply in principle for arbitrary degree of inelasticity and are not limited to specific values of concentration, mass and/or size ratios. As a simple application of these results, the violation of the Onsager reciprocal relations for a confined granular mixture is quantified in terms of the parameter space of the problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا