ﻻ يوجد ملخص باللغة العربية
The purpose of this paper is to derive rigorously the so called viscous shallow water equations given for instance page 958-959 in [A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys, 69 (1997), 931?980]. Such a system of equations is similar to compressible Navier-Stokes equations for a barotropic fluid with a non-constant viscosity. To do that, we consider a layer of incompressible and Newtonian fluid which is relatively thin, assuming no surface tension at the free surface. The motion of the fluid is described by 3d Navier-Stokes equations with constant viscosity and free surface. We prove that for a set of suitable initial data (asymptotically close to shallow water initial data), the Cauchy problem for these equations is well-posed, and the solution converges to the solution of viscous shallow water equations. More precisely, we build the solution of the full problem as a perturbation of the strong solution to the viscous shallow water equations. The method of proof is based on a Lagrangian change of variable that fixes the fluid domain and we have to prove the well-posedness in thin domains: we have to pay a special attention to constants in classical Sobolev inequalities and regularity in Stokes problem.
We consider the Cacuhy problem for a viscous compressible rotating shallow water system with a third-order surface-tension term involved, derived recently in the modelling of motions for shallow water with free surface in a rotating sub-domain. The g
In this paper, we introduce a new extended version of the shallow water equations with surface tension which is skew-symmetric with respect to the L2 scalar product and allows for large gradients of fluid height. This result is a generalization of th
We derive boundary conditions and estimates based on the energy and entropy analysis of systems of the nonlinear shallow water equations in two spatial dimensions. It is shown that the energy method provides more details, but is fully consistent with
The standard multilayer Saint-Venant system consists in introducing fluid layers that are advected by the interfacial velocities. As a consequence there is no mass exchanges between these layers and each layer is described by its height and its avera
This paper concerns the dynamics of a layer of incompressible viscous fluid lying above a rigid plane and with an upper boundary given by a free surface. The fluid is subject to a constant external force with a horizontal component, which arises in m