ﻻ يوجد ملخص باللغة العربية
The turbulent destruction of a cloud subject to the passage of an adiabatic shock is studied. We find large discrepancies between the lifetime of the cloud and the analytical result of Hartquist et al. (1986). These differences appear to be due to the assumption in Hartquist et al. that mass-loss occurs largely as a result of lower pressure regions on the surface of the cloud away from the stagnation point, whereas in reality Kelvin-Helmholtz (KH) instabilities play a dominant role in the cloud destruction. We find that the true lifetime of the cloud (defined as when all of the material from the core of the cloud is well mixed with the intercloud material in the hydrodynamic cells) is about 6 times t_KHD, where t_KHD is the growth timescale for the most disruptive, long-wavelength, KH instabilities. These findings have wide implications for diffuse sources where there is transfer of material between hot and cool phases. The properties of the interaction as a function of Mach number and cloud density contrast are also studied. The interaction is milder at lower Mach numbers with the most marked differences occuring at low shock Mach numbers when the postshock gas is subsonic with respect to the cloud (i.e. M < 2.76). Material stripped off the cloud only forms a long tail-like feature if the density contrast of the cloud to the ambient medium, chi > 1e3.
The process of radiative feedback in Giant Molecular Clouds (GMCs) is an important mechanism for limiting star cluster formation through the heating and ionization of the surrounding gas. We explore the degree to which radiative feedback affects earl
We study the growth rate and saturation level of the turbulent dynamo in magnetohydrodynamical simulations of turbulence, driven with solenoidal (divergence-free) or compressive (curl-free) forcing. For models with Mach numbers ranging from 0.02 to 2
New sensitive CO(2-1) observations of the 30 Doradus region in the Large Magellanic Cloud are presented. We identify a chain of three newly discovered molecular clouds we name KN1, KN2 and KN3 lying within 2--14 pc in projection from the young massiv
Measuring the mass distribution of infrared dark clouds (IRDCs) over the wide dynamic range of their column densities is a fundamental obstacle in determining the initial conditions of high-mass star formation and star cluster formation. We present a
We present 3D hydrodynamic simulations of the adiabatic interaction of a shock with a dense, spherical cloud. We compare how the nature of the interaction changes with the Mach number of the shock, $M$, and the density contrast of the cloud, $chi$. W