ﻻ يوجد ملخص باللغة العربية
We study the growth rate and saturation level of the turbulent dynamo in magnetohydrodynamical simulations of turbulence, driven with solenoidal (divergence-free) or compressive (curl-free) forcing. For models with Mach numbers ranging from 0.02 to 20, we find significantly different magnetic field geometries, amplification rates, and saturation levels, decreasing strongly at the transition from subsonic to supersonic flows, due to the development of shocks. Both extreme types of turbulent forcing drive the dynamo, but solenoidal forcing is more efficient, because it produces more vorticity.
The excitation and further sustenance of large-scale magnetic fields in rotating astrophysical systems, including planets, stars and galaxies, is generally thought to involve a fluid magnetic dynamo effect driven by helical magnetohydrodynamic turbul
The nonlinear and nonlocal coupling of vorticity and strain-rate constitutes a major hindrance in understanding the self-amplification of velocity gradients in turbulent fluid flows. Utilizing highly-resolved direct numerical simulations of isotropic
With the aim of efficiently simulating three-dimensional multiphase turbulent flows with a phase-field method, we propose a new discretization scheme for the biharmonic term (the 4th-order derivative term) of the Cahn-Hilliard equation. This novel sc
Phoresis, the drift of particles induced by scalar gradients in a flow, can result in an effective compressibility, bringing together or repelling particles from each other. Here, we ask whether this effect can affect the transport of particles in a
Collisionless shocks are ubiquitous in the Universe and often associated with strong magnetic field. Here we use large-scale particle-in-cell simulations of non-relativistic perpendicular shocks in the high-Mach-number regime to study the amplificati