ﻻ يوجد ملخص باللغة العربية
SrFe2As2 is the end-member for a series of iron-pnictide superconductors and has a tetragonal-to-orthorhombic phase transition near 200 K. Previous macroscopic measurements to determine the nature of the transition gave seemingly inconsistent results so we use electron microscopy to monitor the local order parameter showing that the transformation is first order and that the orthorhombic phase grows as needle domains. This suggests the transition occurs via the passage of transformation dislocations, explaining the apparent inconsistencies. This mechanism may be common to similar transitions.
We report the temperature dependent x-ray powder diffraction of the FeAs-based superconductors in the range between 300 K and 95 K. In the case of NdOFeAs we have detected the structural phase transition from the tetragonal phase, with P4/nmm space g
In this work we have investigated the orthorhombic to tetragonal phase transition in the Ba2Cu3O4Cl2 compound. This transition was observed by X-ray powder diffractometry carried out in samples heat treated between 700 and 750OC and also in samples w
The structural properties of the SrFe2As2 and CaFe2As2 compounds have been extensively analyzed by transmission electron microscopy (TEM) from room temperature down to 20K. The experimental results demonstrate that the SrFe2As2 crystal, in consistenc
The Nd-doped cuprate La_{2-y-x}Nd_ySr_xCuO_4 displays a first-order phase transition at T_d (= 74 K for x=0.10, y = 0.60) to a low-temperature tetragonal (LTT) phase. A magnetic field H applied || the a-axis leads to an increase in T_d, whereas T_d i
We report the temperature dependent x-ray powder diffraction of the quaternary compound NdOFeAs (also called NdFeAsO) in the range between 300 K and 95 K. We have detected the structural phase transition from the tetragonal phase, with P4/nmm space g