ترغب بنشر مسار تعليمي؟ اضغط هنا

Memristor Behaviour in Nano-Sized Vertical Lsmo/Lsmo Tunnel Junctions

106   0   0.0 ( 0 )
 نشر من قبل Vasily Moshnyaga Prof.
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a memory resistance (memristor) behavior with nonlinear current-voltage characteristics and bipolar hysteretic resistance switching in the nanocolumnar manganite (LSMO) films. The switching from a high (HRS) to a low (LRS) resistance occurs at a bias field ~1 MV/cm. Applied electric field drops mostly at the insulating interfacial LSMO layer and couples to correlated polarons at the LSMO(111)/LSMO(111) vertical interfaces. The observed memristance behaviour has an electronic (polaronic) origin and is caused by an electric-field-controlled Jahn-Teller (JT) effect, followed by the orbital reconstruction and formation of a metastable orbitally disordered interfacial phase (LRS). Compared to the earlier reported ionic memristor in Ti-O films, an electronic (polaronic) nano-sized LSMO memristor shows an additional (re-entrant) LRS-HRS switching at higher fields because of the second minimum in the elastic energy of a JT system.



قيم البحث

اقرأ أيضاً

106 - K. G. Rana , S. Parui , 2013
We investigate electron transport across a complex oxide heterointerface of La$_{0.67}$Sr$_{0.33}$MnO$_3$ (LSMO) on Nb:SrTiO$_3$ (Nb:STO) at different temperatures. For this, we employ the conventional current-voltage method as well as the technique of Ballistic Electron Emission Microscopy (BEEM), which can probe lateral inhomogeneities in transport at the nanometer scale. From current-voltage measurements, we find that the Schottky Barrier height (SBH) at the LSMO/Nb:STO interface decreases at low temperatures accompanied by a larger than unity ideality factor. This is ascribed to the tunneling dominated transport caused by the narrowing of the depletion width at the interface. However, BEEM studies of such unbiased interfaces, do not exhibit SBH lowering at low temperatures, implying that this is triggered by the modification of the interface due to an applied bias and is not an intrinsic property of the interface. Interestingly, the SBH at the nanoscale, as extracted from BEEM studies, at different locations in the device is found to be spatially homogeneous and similar both at room temperature and at low temperatures. Our results highlight the application of BEEM in characterizing electron transport and their homogeneity at such unbiased complex oxide interfaces and yields new insights into the origin of the temperature dependence of the SBH at biased interfaces.
We demonstrate a voltage-controlled exchange bias effect in CoFeB/MgO/CoFeB magnetic tunnel junctions that is related to the interfacial Fe(Co)Ox formed between the CoFeB electrodes and the MgO barrier. The unique combination of interfacial antiferro magnetism, giant tunneling magnetoresistance, and sharp switching of the perpendicularly-magnetized CoFeB allows sensitive detection of the exchange bias. It is found that the exchange bias field can be isothermally controlled by magnetic fields at low temperatures. More importantly, the exchange bias can also be effectively manipulated by the electric field applied to the MgO barrier due to the voltage-controlled antiferromagnetic anisotropy in this system.
We theoretically study the recently observed tunnel-barrier-enhanced dc voltage signals generated by magnetization precession in magnetic tunnel junctions. While the spin pumping is suppressed by the high tunneling impedance, two complimentary proces ses are predicted to result in a sizable voltage generation in ferromagnet (F)|insulator (I)|normal-metal (N) and F|I|F junctions, with one ferromagnet being resonantly excited. Magnetic dynamics in F|I|F systems induces a robust charge pumping, translating into voltage in open circuits. In addition, dynamics in a single ferromagnetic layer develops longitudinal spin accumulation inside the ferromagnet. A tunnel barrier then acts as a nonintrusive probe that converts the spin accumulation into a measurable voltage. Neither of the proposed mechanisms suffers from spin relaxation, which is typically fast on the scale of the exponentially slow tunneling rates. The longitudinal spin-accumulation buildup, however, is very sensitive to the phenomenological ingredients of the spin-relaxation picture.
We have used resonant photoemission with circular polarized light as a new tool to obtain information about the electronic structure of half-metals. After careful sample surface preparation of La0.7Sr0.3MnO3, we have obtained a dichroic signal for th e L2,3 absorption of Mn. Working with a magnetized sample and circular polarized light we observe a clear effect of the helicity of light on the position of the resonant Raman-Auger photoelectrons from the Mn 2p3p3d decay. These results allow us to achieve a rough estimate of the half-metallic spin half-gap.
Spin-orbit coupling in two-dimensional systems is usually characterized by Rashba and Dresselhaus spin-orbit coupling (SOC) linear in the wave vector. However, there is a growing class of materials which instead support dominant SOC cubic in the wave vector (cSOC), while their superconducting properties remain unexplored. By focusing on Josephson junctions in Zeeman field with superconductors separated by a normal cSOC region, we reveal a strongly anharmonic current-phase relation and complex spin structure. An experimental cSOC tunability enables both tunable anomalous phase shift and supercurrent, which flows even at the zero-phase difference in the junction. A fingerprint of cSOC in Josephson junctions is the f-wave spin-triplet superconducting correlations, important for superconducting spintronics and supporting Majorana bound states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا