ترغب بنشر مسار تعليمي؟ اضغط هنا

Binary Contamination in the SEGUE sample: Effects on SSPP Determinations of Stellar Atmospheric Parameters

90   0   0.0 ( 0 )
 نشر من قبل Katharine Schlesinger
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using numerical modeling and a grid of synthetic spectra, we examine the effects that unresolved binaries have on the determination of various stellar atmospheric parameters for SEGUE targets measured using the SEGUE Stellar Parameter Pipeline (SSPP). To model undetected binaries that may be in the SEGUE sample, we use a variety of mass distributions for the primary and secondary stars in conjunction with empirically determined relationships for orbital parameters to determine the fraction of G-K dwarf stars, as defined by SDSS color cuts, that will be blended with a secondary companion. We focus on the G-K dwarf sample in SEGUE as it records the history of chemical enrichment in our galaxy. To determine the effect of the secondary on the spectroscopic parameters, we synthesize a grid of model spectra from 3275 to 7850 K (~0.1 to 1.0 msun) and [Fe/H]=-0.5 to -2.5 from MARCS model atmospheres using TurboSpectrum. We analyze both infinite signal-to-noise ratio (S/N) models and degrad



قيم البحث

اقرأ أيضاً

In this work we quantify the effect of an unresolved companion star on the derived stellar parameters of the primary star if a blended spectrum is fit assuming the star is single. Fitting tools that determine stellar parameters from spectra typically fit for a single star, but we know that up to half of all exoplanet host stars may have one or more companion stars. We use high-resolution spectra of planet host stars in the Kepler field from the California-Kepler Survey to create simulated binaries; we select 8 stellar pairs and vary the contribution of the secondary star, then determine stellar parameters with SpecMatch-Emp and compare them to the parameters derived for the primary star alone. We find that in most cases the effective temperature, surface gravity, metallicity, and stellar radius derived from the composite spectrum are within 2-3 $sigma$ of the values determined from the unblended spectrum, but the deviations depend on the properties of the two stars. Relatively bright companion stars that are similar to the primary star have the largest effect on the derived parameters; in these cases the stellar radii can be overestimated by up to 60%. We find that metallicities are generally underestimated, with values up to 8 times smaller than the typical uncertainty in [Fe/H]. Our study shows that follow-up observations are necessary to detect or set limits on stellar companions of planetary host stars so that stellar (and planet) parameters are as accurate as possible.
Bisectors of the HARPS cross-correlation function (CCF) can discern between planetary radial-velocity (RV) signals and spurious RV signals from stellar magnetic activity variations. However, little is known about the effects of the stellar atmosphere on CCF bisectors or how these effects vary with spectral type and luminosity class. Here we investigate the variations in the shapes of HARPS CCF bisectors across the HR diagram in order to relate these to the basic stellar parameters, surface gravity and temperature. We use archive spectra of 67 well studied stars observed with HARPS and extract mean CCF bisectors. We derive previously defined bisector measures (BIS, v_bot, c_b) and we define and derive a new measure called the CCF Bisector Span (CBS) from the minimum radius of curvature on direct fits to the CCF bisector. We show that the bisector measures correlate differently, and non-linearly with log g and T_eff. The resulting correlations allow for the estimation of log g and T_eff from the bisector measures. We compare our results with 3D stellar atmosphere models and show that we can reproduce the shape of the CCF bisector for the Sun.
The increasing number of spectra gathered by spectroscopic sky surveys and transiting exoplanet follow-up has pushed the community to develop automated tools for atmospheric stellar parameters determination. Here we present a novel approach that allo ws the measurement of temperature ($T_{rm eff}$), metallicity ($[{rm Fe}/{rm H}]$) and gravity ($log g$) within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, our technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. We use literature stellar parameters of high signal-to-noise ($textrm{SNR}$), high-resolution HARPS spectra of FGK Main Sequence stars to calibrate $T_{rm eff}$, $[{rm Fe}/{rm H}]$ and $log g$ as a function of CCFs parameters. Our technique is validated using low $textrm{SNR}$ spectra obtained with the same instrument. For FGK stars we achieve a precision of $sigma_{T_{rm eff}} = 50$ K, $sigma_{log g} = 0.09~ textrm{dex}$ and $sigma_{textrm{Fe}/textrm{H}]} =0.035~ textrm{dex}$ at $textrm{SNR}=50 $, while the precision for observation with $textrm{SNR} gtrsim 100$ and the overall accuracy are constrained by the literature values used to calibrate the CCFs. Our approach can be easily extended to other instruments with similar spectral range and resolution, or to other spectral range and stars other than FGK dwarfs if a large sample of reference stars is available for the calibration. Additionally, we provide the mathematical formulation to convert synthetic equivalent widths to CCF parameters as an alternative to direct calibration. We have made our tool publicly available.
We present detailed parameter determinations of two chemically normal late A-type stars, HD 32115 and HD 37594, to uncover the reasons behind large discrepancies between two previous analyses of these stars performed with a semi-automatic procedure a nd a classical analysis. Our study is based on high resolution, high signal-to-noise spectra obtained at the McDonald Observatory. Our method is based on the simultaneous use of all available observables: multicolor photometry, pressure-sensitive magnesium lines, metallic lines and Balmer line profiles. Our final set of fundamental parameters fits, within the error bars, all available observables. It differs from the published results obtained with a semi-automatic procedure. A direct comparison between our new observational material and the spectra previously used by other authors shows that the quality of the data is not the origin of the discrepancies. As the two stars require a substantial macroturbulence velocity to fit the line profiles, we concluded that neglecting this additional broadening in the semi-automatic analysis is one origin of discrepancy. The use of FeI excitation equilibrium and of the Fe ionisation equilibrium, to derive effective temperature and surface gravity, respectively, neglecting all other indicators leads to a systematically erroneously high effective temperature. We deduce that the results obtained using only one parameter indicator might be biased and that those results need to be cautiously taken when performing further detailed analyses, such as modelling of the asteroseismic frequencies or characterising transiting exoplanets.
Chemical compositions are determined based on high-resolution spectroscopy for 137 candidate extremely metal-poor (EMP) stars selected from the Sloan Digital Sky Survey (SDSS) and its first stellar extension, the Sloan Extension for Galactic Understa nding and Exploration (SEGUE). High-resolution spectra with moderate signal-to-noise (S/N) ratios were obtained with the High Dispersion Spectrograph of the Subaru Telescope. Most of the sample (approximately 80%) are main-sequence turn-off stars, including dwarfs and subgiants. Four cool main-sequence stars, the most metal-deficient such stars known, are included in the remaining sample. Good agreement is found between effective temperatures estimated by the SEGUE stellar parameter pipeline, based on the SDSS/SEGUE medium-resolution spectra, and those estimated from the broadband $(V-K)_0$ and $(g-r)_0$ colors. Our abundance measurements reveal that 70 stars in our sample have [Fe/H] $ < -3$, adding a significant number of EMP stars to the currently known sample. Our analyses determine the abundances of eight elements (C, Na, Mg, Ca, Ti, Cr, Sr, and Ba) in addition to Fe. The fraction of carbon-enhanced metal-poor stars ([C/Fe]$> +0.7$) among the 25 giants in our sample is as high as 36%, while only a lower limit on the fraction (9%) is estimated for turn-off stars. This paper is the first of a series of papers based on these observational results. The following papers in this series will discuss the higher-resolution and higher-S/N observations of a subset of this sample, the metallicity distribution function, binarity, and correlations between the chemical composition and kinematics of extremely metal-poor stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا