ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Resolution Spectroscopy of Extremely Metal-Poor Stars from SDSS/SEGUE: I. Atmospheric Parameters and Chemical Compositions

102   0   0.0 ( 0 )
 نشر من قبل Wako Aoki
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chemical compositions are determined based on high-resolution spectroscopy for 137 candidate extremely metal-poor (EMP) stars selected from the Sloan Digital Sky Survey (SDSS) and its first stellar extension, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). High-resolution spectra with moderate signal-to-noise (S/N) ratios were obtained with the High Dispersion Spectrograph of the Subaru Telescope. Most of the sample (approximately 80%) are main-sequence turn-off stars, including dwarfs and subgiants. Four cool main-sequence stars, the most metal-deficient such stars known, are included in the remaining sample. Good agreement is found between effective temperatures estimated by the SEGUE stellar parameter pipeline, based on the SDSS/SEGUE medium-resolution spectra, and those estimated from the broadband $(V-K)_0$ and $(g-r)_0$ colors. Our abundance measurements reveal that 70 stars in our sample have [Fe/H] $ < -3$, adding a significant number of EMP stars to the currently known sample. Our analyses determine the abundances of eight elements (C, Na, Mg, Ca, Ti, Cr, Sr, and Ba) in addition to Fe. The fraction of carbon-enhanced metal-poor stars ([C/Fe]$> +0.7$) among the 25 giants in our sample is as high as 36%, while only a lower limit on the fraction (9%) is estimated for turn-off stars. This paper is the first of a series of papers based on these observational results. The following papers in this series will discuss the higher-resolution and higher-S/N observations of a subset of this sample, the metallicity distribution function, binarity, and correlations between the chemical composition and kinematics of extremely metal-poor stars.

قيم البحث

اقرأ أيضاً

190 - Wako Aoki 2014
The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolutio n. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor, Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] < -3.0) stars have yet been obtained. Here we investigate the fraction of double-lined spectroscopic binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-mass stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey, and observed at high spectral resolution in a previous study by Aoki et al. That survey reported three double-lined spectroscopic binaries and 11 CEMP stars, which we consider along with a sample of EMP stars from the literature compiled in the SAGA database. We have conducted measurements of the velocity components for stacked absorption features of different spectral lines for each double-lined spectroscopic binary. Our estimate indicates that the fraction of binary stars having orbital periods shorter than 1000 days is at least 10 %, and possibly as high as 20 %, if the majority of CEMP stars are formed in such short-period binaries. This result suggests that the period distribution of EMP binary systems is biased toward short periods, unless the binary fraction of low-mass EMP stars is significantly higher than that of other nearby stars.
We report the discovery of one extremely metal-poor (EMP; [Fe/H]<-3) and one ultra metal-poor (UMP; [Fe/H]<-4) star selected from the SDSS/SEGUE survey. These stars were identified as EMP candidates based on their medium-resolution (R~2,000) spectra, and were followed-up with high-resolution (R~35,000) spectroscopy with the Magellan-Clay Telescope. Their derived chemical abundances exhibit good agreement with those of stars with similar metallicities. We also provide new insights on the formation of the UMP stars, based on comparison with a new set of theoretical models of supernovae nucleosynthesis. The models were matched with 20 UMP stars found in the literature, together with one of the program stars (SDSS J1204+1201), with [Fe/H]=-4.34. From fitting their abundances, we find that the supernovae progenitors, for stars where carbon and nitrogen are measured, had masses ranging from 20.5 M_sun to 28 M_sun and explosion energies from 0.3 to 0.9x10^51 erg. These results are highly sensitive to the carbon and nitrogen abundance determinations, which is one of the main drivers for future high-resolution follow-up of UMP candidates. In addition, we are able to reproduce the different CNO abundance patterns found in UMP stars with a single progenitor type, by varying its mass and explosion energy.
We analyze a sample of tens of thousands of spectra of halo turnoff stars, obtained with the optical spectrographs of the Sloan Digital Sky Survey (SDSS), to characterize the stellar halo population in situ out to a distance of a few tens of kpc from the Sun. In this paper we describe the derivation of atmospheric parameters. We also derive the overall stellar metallicity distribution based on F-type stars observed as flux calibrators for the Baryonic Oscillations Spectroscopic Survey (BOSS). Our analysis is based on an automated method that determines the set of parameters of a model atmosphere that reproduces each observed spectrum best. We used an optimization algorithm and evaluate model fluxes by means of interpolation in a precomputed grid. In our analysis, we account for the spectrographs varying resolution as a function of fiber and wavelength. Our results for early SDSS (pre-BOSS upgrade) data compare well with those from the SEGUE Stellar Parameter Pipeline (SSPP), except for stars with logg (cgs units) lower than 2.5. An analysis of stars in the globular cluster M13 reveals a dependence of the inferred metallicity on surface gravity for stars with logg < 2.5, confirming the systematics identified in the comparison with the SSPP. We find that our metallicity estimates are significantly more precise than the SSPP results. We obtain a halo metallicity distribution that is narrower and more asymmetric than in previous studies. The lowest gravity stars in our sample, at tens of kpc from the Sun, indicate a shift of the metallicity distribution to lower abundances, consistent with what is expected from a dual halo system in the Milky Way.
We study the evolution of extremely metal-poor AGB stars, with metallicities down to [Fe/H]=-5, to understand the main evolutionary properties, the efficiency of the processes able to alter their surface chemical composition and to determine the gas and dust yields. We calculate two sets of evolutionary sequences of stars in the 1-7.5Msun mass range, evolved from the pre-main sequence to the end of the AGB phase. To explore the extremely metal-poor chemistries we adopted the metallicities Z=3x10^{-5} and Z=3x10^{-7} which correspond, respectively to [Fe/H]=-3 and [Fe/H]=-5. The results from stellar evolution modelling are used to calculate the yields of the individual chemical species. We also modelled dust formation in the wind, to determine the dust produced by these objects. The evolution of AGB stars in the extremely metal-poor domain explored here proves tremendously sensitive to the initial mass of the star. M<2Msun stars experience several third dredge-up events, which favour the gradual surface enrichment of C12 and the formation of significant quantities of carbonaceous dust, of the order of 0.01Msun. The C13 and nitrogen yiel are found to be significantly smaller than in previous explorations of low-mass, metal-poor AGB stars, owing to the weaker proton ingestion episodes experienced during the initial AGB phases. M>5Msun stars experience hot bottom burning and their surface chemistry reflects the equilibria of a very advanced proton-capture nucleosynthesis; little dust production takes place in their wind. Intermediate mass stars experience both third dredge-up and hot bottom burning: they prove efficient producers of nitrogen, which is formed by proton captures on C12 nuclei of primary origin dredged-up from the internal regions.
sdsszeroeight (V = 11.4; [Fe/H] = $-$3.1) and sdssonethree (V = 12.4; [Fe/H] = $-$3.2) were observed with the SDSS 2.5-m telescope as part of the SDSS-MARVELS spectroscopic pre-survey, and were identified as extremely metal-poor (EMP; [Fe/H] $< -3.0$ ) stars during high-resolution follow-up with the Hanle Echelle Spectrograph (HESP) on the 2.3-m Himalayan Chandra Telescope. In this paper, the first science results using HESP, we present a detailed analysis of their chemical abundances. Both the stars exhibit under-abundances in their neutron-capture elements, while one of them, sdssonethree, is clearly enhanced in carbon. Lithium was also detected in this star at a level of about A(Li) = 1.95. The spectra were obtained over a span of 6-24 months, and indicate that both stars could be members of binary systems. We compare the elemental abundances derived for these two stars along with other carbon-enhanced metal-poor (CEMP) and EMP stars, in order to understand the nature of their parent supernovae. We find that CEMP-no stars and EMP dwarfs exhibit very similar trends in their lithium abundances at various metallicities. We also find indications that CEMP-no stars have larger abundances of Cr and Co at a given metallicity, compared to EMP stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا