ﻻ يوجد ملخص باللغة العربية
GALEX observations of comet 9P/Tempel 1 using the near ultraviolet (NUV) objective grism were made before, during and after the Deep Impact event that occurred on 2005 July 4 at 05:52:03 UT when a 370 kg NASA spacecraft was maneuvered into the path of the comet. The NUV channel provides usable spectral information in a bandpass covering 2000 - 3400 A with a point source spectral resolving power of approximately 100. The primary spectral features in this range include solar continuum scattered from cometary dust and emissions from OH and CS molecular bands centered near 3085 and 2575 A, respectively. In particular, we report the only cometary CS emission detected during this event. The observations allow the evolution of these spectral features to be tracked over the period of the encounter. In general, the NUV emissions observed from Tempel 1 are much fainter than those that have been observed by GALEX from other comets. However, it is possible to derive production rates for the parent molecules of the species detected by GALEX in Tempel 1 and to determine the number of these molecules liberated by the impact. The derived quiescent production rates are Q(H2O) = 6.4e27 molecules/s and Q(CS2) = 6.7e24 molecules/s, while the impact produced an additional 1.6e32 H2O molecules and 1.3e29 CS2 molecules, a similar ratio as in quiescent outgassing.
The time dependence of the changes in the emission spectra of Comet 9P/Tempel 1 after Deep Impact are derived and discussed. This was a unique event because for the first time it gave astronomers the opportunity to follow the time history of the form
We analyzed Deep Impact High Resolution Instrument (HRI) images acquired within the first seconds after collision of the Deep Impact impactor with the nucleus of comet 9P/Tempel 1. These images reveal an optically thick ejecta plume that casts a shad
On 4 July 2005 at 5:52 UT the Deep Impact mission successfully completed its goal to hit the nucleus of 9P/Tempel 1 with an impactor, forming a crater on the nucleus and ejecting material into the coma of the comet. NASAs Submillimeter Wave Astronomy
We present radio observations of comet 9P/Tempel 1 associated with the Deep Impact spacecraft collision of 2005 July 4. Weak 18-cm OH emission was detected with the Parkes 64-m telescope, in data averaged over July 4 to 6, at a level of 12 +/- 3 mJy
On 4 July 2005 at 05:52 UT, the impactor of NASAs Deep Impact (DI) mission crashed into comet 9P/Tempel 1 with a velocity of about 10 km/s. The material ejected by the impact expanded into the normal coma, produced by ordinary cometary activity. Th