ﻻ يوجد ملخص باللغة العربية
The phenomenological equations of motion for the relaxation of ordered phases of magnetized and polarized crystal phases can be developed in close analogy with one another. For the case of magnetized systems, the driving magnetic field intensity toward relaxation was developed by Gilbert. For the case of polarized systems, the driving electric field intensity toward relaxation was developed by Khalatnikov. The transport times for relaxation into thermal equilibrium can be attributed to viscous sound wave damping via magnetostriction for the magnetic case and electrostriction for the polarization case.
The inertial dynamics of magnetization in a ferromagnet is investigated theoretically. The analytically derived dynamic response upon microwave excitation shows two peaks: ferromagnetic and nutation resonances. The exact analytical expressions of fre
Magnetic damping is a key metric for emerging technologies based on magnetic nanoparticles, such as spin torque memory and high-resolution biomagnetic imaging. Despite its importance, understanding of magnetic dissipation in nanoscale ferromagnets re
We present a microscopic theory for magnetization relaxation in metallic ferromagnets of nanoscopic dimensions that is based on the dynamic spin response matrix in the presence of spin-orbit coupling. Our approach allows the calculation of the spin e
We investigated the temperature dependence of the magnetic damping in the exchange biased Pt/ Fe50Mn50 /Fe20Ni80 /SiOx multilayers. In samples having a strong exchange bias, we observed a drastic decrease of the magnetic damping of the FeNi with incr
The dynamic structure function $S(k,omega)$ informs about the dispersion and damping of excitations. We have recently (Phys. Rev. B {bf 97}, 184520 (2018)) compared experimental results for $S(k,omega)$ from high-precision neutron scattering experime