ترغب بنشر مسار تعليمي؟ اضغط هنا

Choking non-local magnetic damping in exchange biased ferromagnets

103   0   0.0 ( 0 )
 نشر من قبل Takahiro Moriyama
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the temperature dependence of the magnetic damping in the exchange biased Pt/ Fe50Mn50 /Fe20Ni80 /SiOx multilayers. In samples having a strong exchange bias, we observed a drastic decrease of the magnetic damping of the FeNi with increasing temperature up to the blocking temperature. The results essentially indicate that the non-local enhancement of the magnetic damping can be choked by the adjacent antiferromagnet and its temperature dependent exchange bias. We also pointed out that such a strong temperature dependent damping may be very beneficial for spintronic applications.



قيم البحث

اقرأ أيضاً

Although ferromagnetism is in general a long-range collective phenomenon, it is possible to induce local spatial variations of magnetic properties in ferromagnetic materials. For example, systematic variation of the exchange coupling strength can be used to create systems that behave as if they are comprised of virtually independent segments that exhibit local Curie temperatures. Such localization of thermodynamic behavior leads to boundaries between strongly and weakly magnetized regions that can be controllably moved within the material with temperature. The utility of this interesting functionality is largely dependent on the inherent spatial resolution of magnetic properties - specifically the distance over which the exchange strength and corresponding properties behave locally. To test the degree to which this type of localization can be realized in materials, we have fabricated epitaxial films of Co[1-x]Ru[x] alloy featuring a nanometer scale triangular wave-like concentration depth profile. Continuous nanoscale modulation of the local Curie temperature was observed using polarized neutron reflectometry. These results are consistent with mean-field simulations of spin systems that encompass the possibility of delocalized exchange coupling, and show that composition grading can be used to localize magnetic properties in films down to the nanometer level. Since this is demonstrated here for an itinerant metal, we assert that for virtually any modulated magnetic material system, collective effects can be suppressed to length scales smaller than about 3 nm, so that magnetic behavior overall can be well described in terms of local material properties.
The modification of the magnetization dissipation or Gilbert damping caused by an inhomogeneous magnetic structure and expressed in terms of a wave vector dependent tensor $underline{alpha}(vec{q})$ is investigated by means of linear response theory. A corresponding expression for $underline{alpha}(vec{q})$ in terms of the electronic Green function has been developed giving in particular the leading contributions to the Gilbert damping linear and quadratic in $q$. Numerical results for realistic systems are presented that have been obtained by implementing the scheme within the framework of the fully relativistic KKR (Korringa-Kohn-Rostoker) band structure method. Using the multilayered system (Cu/Fe$_{1-x}$Co$_x$/Pt)$_n$ as an example for systems without inversion symmetry we demonstrate the occurrence of non-vanishing linear contributions. For the alloy system bcc Fe$_{1-x}$Co$_x$ having inversion symmetry, on the other hand, only the quadratic contribution is non-zero. As it is shown, this quadratic contribution does not vanish even if the spin-orbit coupling is suppressed, i.e. it is a direct consequence of the non-collinear spin configuration.
We explore the derivation of interatomic exchange interactions in ferromagnets within density-functional theory (DFT) and the mapping of DFT results onto a spin Hamiltonian. We delve into the problem of systems comprising atoms with strong spontaneou s moments together with atoms with weak induced moments. All moments are considered as degrees of freedom, with the strong moments thermally fluctuating only in angle and the weak moments thermally fluctuating in angle and magnitude. We argue that a quadratic dependence of the energy on the weak local moments magnitude, which is a good approximation in many cases, allows for an elimination of the weak-moment degrees of freedom from the thermodynamic expressions in favor of a renormalization of the Heisenberg interactions among the strong moments. We show that the renormalization is valid at all temperatures accounting for the thermal fluctuations and resulting in temperature-independent renormalized interactions. These are shown to be the ones directly derived from total-energy DFT calculations by constraining the strong-moment directions, as is done e.g. in spin-spiral methods. We furthermore prove that within this framework the thermodynamics of the weak-moment subsystem, and in particular all correlation functions, can be derived as polynomials of the correlation functions of the strong-moment subsystem with coefficients that depend on the spin susceptibility and that can be calculated within DFT. These conclusions are rigorous under certain physical assumptions on the measure in the magnetic phase space. We implement the scheme in the full-potential linearized augmented plane wave method using the concept of spin-spiral states, considering applicable symmetry relations and the use of the magnetic force theorem. Our analytical results are corroborated by numerical calculations employing DFT and a Monte Carlo method.
The magnetic properties of trilayers consisting of a diluted magnetic alloy, CuMn (Cu0.99Mn0.01), a soft ferromagnet, Py(Ni0.8Fe0.2), and an antiferromagnet, alpha-Fe2O3, were investigated. The samples, grown by UHV magnetron sputtering, were magneti cally characterized in the temperature range T = 3-100 K. Typical exchange bias features, namely clear hysteresis cycle shifts and coercivity enhancements, were observed. Moreover the presence of an inverse bias, which had been already reported for spin glass-based structures, was also obtained in a well defined range of temperatures and CuMn thicknesses.
Ensemble-averaged exchange bias in arrays of Fe/FeF2 nanodots has been deconvoluted into local, microscopic, bias separately experienced by nanodots going through different reversal modes. The relative fraction of dots in each mode can be modified by exchange bias. Single domain dots exhibit a simple loop shift, while vortex state dots have asymmetric shifts in the vortex nucleation and annihilation fields, manifesting local incomplete domain walls in these nanodots as magnetic vortices with tilted cores.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا