ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotics for a special solution to the second member of the Painleve I hierarchy

182   0   0.0 ( 0 )
 نشر من قبل Tom Claeys
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Claeys




اسأل ChatGPT حول البحث

We study the asymptotic behavior of a special smooth solution y(x,t) to the second member of the Painleve I hierarchy. This solution arises in random matrix theory and in the study of Hamiltonian perturbations of hyperbolic equations. The asymptotic behavior of y(x,t) if xto pminfty (for fixed t) is known and relatively simple, but it turns out to be more subtle when x and t tend to infinity simultaneously. We distinguish a region of algebraic asymptotic behavior and a region of elliptic asymptotic behavior, and we obtain rigorous asymptotics in both regions. We also discuss two critical transitional asymptotic regimes.



قيم البحث

اقرأ أيضاً

253 - T. Claeys , T. Grava 2011
We study the Cauchy problem for the Korteweg-de Vries (KdV) hierarchy in the small dispersion limit where $eto 0$. For negative analytic initial data with a single negative hump, we prove that for small times, the solution is approximated by the solu tion to the hyperbolic transport equation which corresponds to $e=0$. Near the time of gradient catastrophe for the transport equation, we show that the solution to the KdV hierarchy is approximated by a particular Painleve transcendent. This supports Dubrovins universality conjecture concerning the critical behavior of Hamiltonian perturbations of hyperbolic equations. We use the Riemann-Hilbert approach to prove our results.
Within the geometrical framework developed in arXiv:0705.2362, the problem of minimality for constrained calculus of variations is analysed among the class of differentiable curves. A fully covariant representation of the second variation of the acti on functional, based on a suitable gauge transformation of the Lagrangian, is explicitly worked out. Both necessary and sufficient conditions for minimality are proved, and are then reinterpreted in terms of Jacobi fields.
102 - Masatoshi Noumi 2003
An overview is given on recent developments in the affine Weyl group approach to Painleve equations and discrete Painleve equations, based on the joint work with Y. Yamada and K. Kajiwara.
229 - Phil Howes , Nalini Joshi 2012
We study the solutions of the second Painleve equation in the space of initial conditions first constructed by Okamoto, in the limit as the independent variable, x, goes to infinity. Simultaneously, we study solutions of the related equation known as the thirty-fourth Painleve equation. By considering degenerate cases of the autonomous flow, we recover the known special solutions, which are either rational functions or expressible in terms of Airy functions. We show that the solutions that do not vanish at infinity possess an infinite number of poles. An essential element of our construction is the proof that the union of exceptional lines is a repellor for the dynamics in Okamotos space. Moreover, we show that the limit set of the solutions exists and is compact and connected.
172 - A. Buryak 2013
In this paper we prove that the generating series of the Hodge integrals over the moduli space of stable curves is a solution of a certain deformation of the KdV hierarchy. This hierarchy is constructed in the framework of the Dubrovin-Zhang theory o f the hierarchies of the topological type. It occurs that our deformation of the KdV hierarchy is closely related to the hierarchy of the Intermediate Long Wave equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا