ﻻ يوجد ملخص باللغة العربية
Stellar activity produced by spots and plages affects the radial velocity (RV) signatures. Because even low activity stars would produce such a signal, it is crucial to determine how it influences our ability to detect small planetary signals such as those produced by Earth-mass planets in the habitable zone (HZ). In a recent paper, we investigated the impact of sunlike spots. We aim here to investigate the additional impact of plages. We used the spot and plage properties over a solar cycle to derive the RV that would be observed if the Sun was seen edge-on. The RV signal comes from the photometric contribution of spots and plages and from the attenuation of the convective blueshift in plages. We compared the RV signal with the signal that would be produced by an Earth-mass planet in the HZ. We find that the photometric contributions of spots and plages to the RV signal partially balance each other out, so that the residual signal is comparable to the spot signal. However, the plage contribution due to the convective blueshift attenuation dominates the total signal, with an amplitude over the solar cycle of about 8-10 m/s. This contribution is very strongly correlated with the Ca index on the long term, which may be a way to distinguish between stellar activity and a planet. Providing a very good temporal sampling and signal-to-noise ratio, the photometric contribution of plages and spots should not prevent detection of Earth-mass planets in the HZ. However, the convection contribution makes such a direct detection impossible, unless its effect can be corrected for by methods that still need to be found. We show that it is possible to identify the convection contribution if the sensitivity is good enough, for example, by using activity indicators.
Stellar activity is a potential important limitation to the detection of low mass extrasolar planets with indirect methods (RV, photometry, astrometry). In previous papers, using the Sun as a proxy, we investigated the impact of stellar activity (spo
Stellar spots may in some cases produce radial velocity (RV) signatures similar to those of exoplanets. To further investigate the impact of spots, we aim at studying the detectability of Earth mass planets in the habitable zone (HZ) of solar type st
Stellar activity induced by active structures (eg, spots, faculae) is known to strongly impact the radial velocity time series. It then limits the detection of small planetary RV signals (eg, an Earth-mass planet in the habitable zone of a solar-like
We study the influence of low-level water and high-level ice clouds on low-resolution reflection spectra and planetary albedos of Earth-like planets orbiting different types of stars in both the visible and near infrared wavelength range. We use a on
The mission of NASAs Terrestrial Planet Finder (TPF) is to find Earth-like planets orbiting other stars and characterize the atmospheres of these planets using spectroscopy. Because of the enormous brightness ratio between the star and the reflected