ﻻ يوجد ملخص باللغة العربية
Stellar spots may in some cases produce radial velocity (RV) signatures similar to those of exoplanets. To further investigate the impact of spots, we aim at studying the detectability of Earth mass planets in the habitable zone (HZ) of solar type stars, if covered by spots similar to the sunspots. We have used the Sunspots properties recorded over one solar cycle between 1993 and 2003 to build the RV curve that a solar type star seen edge-on would show, if covered by such spots with Tsun -Tspot = 550K. We also simulate the RV of such a spotted star surrounded by an Earth mass planet located in the HZ. Under present assumptions, the detection of a 1 M Earth planet located between 0.8 and 1.2 AU requires an intensive monitoring (weekly or better), during several years of low activity phasis. The temporal sampling is more crucial than the precision of the data (assuming precisions in the range [1-10] cm/s). Cooler spots may become a problem for such detections. Also, we anticipate that plages, not considered in this paper, could further complicate or even compromise the detections.
Stellar activity produced by spots and plages affects the radial velocity (RV) signatures. Because even low activity stars would produce such a signal, it is crucial to determine how it influences our ability to detect small planetary signals such as
Stellar activity is a potential important limitation to the detection of low mass extrasolar planets with indirect methods (RV, photometry, astrometry). In previous papers, using the Sun as a proxy, we investigated the impact of stellar activity (spo
Stellar activity induced by active structures (eg, spots, faculae) is known to strongly impact the radial velocity time series. It then limits the detection of small planetary RV signals (eg, an Earth-mass planet in the habitable zone of a solar-like
The mission of NASAs Terrestrial Planet Finder (TPF) is to find Earth-like planets orbiting other stars and characterize the atmospheres of these planets using spectroscopy. Because of the enormous brightness ratio between the star and the reflected
Small planets, 1-4x the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing