ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Monte Carlo study of large spin-polarized tritium clusters

153   0   0.0 ( 0 )
 نشر من قبل Jordi Boronat
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work expands recent investigations in the field of spin-polarized tritium (T$downarrow$) clusters . We report the results for the ground state energy and structural properties of large T$downarrow$ cl usters consisting of up to 320 atoms. All calculations have been performed with variational and diffusi on Monte Carlo methods, using an accurate {it ab initio} interatomic potential. Our results for $N le q 40$ are in good agreement with results obtained by other groups. Using a liquid-drop expression for t he energy per particle, we estimate the liquid equilibrium density, which is in good agreement with our recently obtained results for bulk T$downarrow$. In addition, the calculations of the energy for larg e clusters have allowed for an estimation of the surface tension. From the mean-square radius of the dr op, determined using unbiased estimators, we determine the dependence of the radii on the size of the c luster and extract the unit radius of the T$downarrow$ liquid.



قيم البحث

اقرأ أيضاً

321 - I. Beslic , L. Vranjes Markic , 2007
We have investigated the stability limits of small spin-polarized clusters consisting of up to ten spin-polarized tritium T$downarrow$ atoms and the mixtures of T$downarrow$ with spin-polarized deuterium D$downarrow$ and hydrogen H$downarrow$ atoms. All of our calculations have been performed using the variational and diffusion Monte Carlo methods. For clusters with D$downarrow$ atoms, the released node procedure is used in cases where the wave function has nodes. In addition to the energy, we have also calculated the structure of small clusters using unbiased estimators. Results obtained for pure T$downarrow$ clusters are in good accordance with previous calculations, confirming that the trimer is the smallest spin-polarized tritium cluster. Our results show that mixed T$downarrow$-H$downarrow$ clusters having up to ten atoms are unstable and that it takes at least three tritium atoms to bind one, two or three D$downarrow$ atoms. Among all the considered clusters, we have found no other Borromean states except the ground state of the T$downarrow$ trimer.
The ground-state properties of spin-polarized tritium T$downarrow$ at zero temperature are obtained by means of diffusion Monte Carlo calculations. Using an accurate {em ab initio} T$downarrow$-T$downarrow$ interatomic potential we have studied its l iquid phase, from the spinodal point until densities above its freezing point. The equilibrium density of the liquid is significantly higher and the equilibrium energy of $-3.664(6)$ K significantly lower than in previous approximate descriptions. The solid phase has also been studied for three lattices up to high pressures, and we find that hcp lattice is slightly preferred. The liquid-solid phase transition has been determined using the double-tangent Maxwell construction; at zero temperature, bulk tritium freezes at a pressure of $P=9(1)$ bar.
The ground state properties of spin-polarized deuterium (D$downarrow$) at zero temperature are obtained by means of the diffusion Monte Carlo calculations within the fixed-node approximation. Three D$downarrow$ species have been investigated (D$downa rrow_1$, D$downarrow_2$, D$downarrow_3$), corresponding respectively to one, two and three equally occupied nuclear spin states. Influence of the backflow correlations on the ground state energy of the systems is explored. The equilibrium densities for D$downarrow_2$ and D$downarrow_3$ liquids are obtained and compared with ones obtained in previous approximate prediction. The density and the pressure at which the gas-liquid phase transition occurs at $T$=0 is obtained for D$downarrow_1$.
We study, using quantum Monte Carlo (QMC) simulations, the ground state properties of a one dimensional Rabi-Hubbard model. The model consists of a lattice of Rabi systems coupled by a photon hopping term between near neighbor sites. For large enough coupling between photons and atoms, the phase diagram generally consists of only two phases: a coherent phase and a compressible incoherent one separated by a quantum phase transition (QPT). We show that, as one goes deeper in the coherent phase, the system becomes unstable exhibiting a divergence of the number of photons. The Mott phases which are present in the Jaynes-Cummings-Hubbard model are not observed in these cases due to the presence of non-negligible counter-rotating terms. We show that these two models become equivalent only when the detuning is negative and large enough, or if the counter-rotating terms are small enough.
We present a diffusion Monte Carlo study of a vortex line excitation attached to the center of a $^4$He droplet at zero temperature. The vortex energy is estimated for droplets of increasing number of atoms, from N=70 up to 300 showing a monotonous i ncrease with $N$. The evolution of the core radius and its associated energy, the core energy, is also studied as a function of $N$. The core radius is $sim 1$ AA in the center and increases when approaching the droplet surface; the core energy per unit volume stabilizes at a value 2.8 K$sigma^{-3}$ ($sigma=2.556$ AA) for $N ge 200$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا