ﻻ يوجد ملخص باللغة العربية
We have investigated the stability limits of small spin-polarized clusters consisting of up to ten spin-polarized tritium T$downarrow$ atoms and the mixtures of T$downarrow$ with spin-polarized deuterium D$downarrow$ and hydrogen H$downarrow$ atoms. All of our calculations have been performed using the variational and diffusion Monte Carlo methods. For clusters with D$downarrow$ atoms, the released node procedure is used in cases where the wave function has nodes. In addition to the energy, we have also calculated the structure of small clusters using unbiased estimators. Results obtained for pure T$downarrow$ clusters are in good accordance with previous calculations, confirming that the trimer is the smallest spin-polarized tritium cluster. Our results show that mixed T$downarrow$-H$downarrow$ clusters having up to ten atoms are unstable and that it takes at least three tritium atoms to bind one, two or three D$downarrow$ atoms. Among all the considered clusters, we have found no other Borromean states except the ground state of the T$downarrow$ trimer.
This work expands recent investigations in the field of spin-polarized tritium (T$downarrow$) clusters . We report the results for the ground state energy and structural properties of large T$downarrow$ cl usters consisting of up to 320 atoms. All ca
The ground-state properties of spin-polarized tritium T$downarrow$ at zero temperature are obtained by means of diffusion Monte Carlo calculations. Using an accurate {em ab initio} T$downarrow$-T$downarrow$ interatomic potential we have studied its l
The ground state properties of spin-polarized deuterium (D$downarrow$) at zero temperature are obtained by means of the diffusion Monte Carlo calculations within the fixed-node approximation. Three D$downarrow$ species have been investigated (D$downa
We report ground state energies and structural properties for small helium clusters (4He) containing an H- impurity computed by means of variational and diffusion Monte Carlo methods. Except for 4He_2H- that has a noticeable contribution from colline
We study, using quantum Monte Carlo (QMC) simulations, the ground state properties of a one dimensional Rabi-Hubbard model. The model consists of a lattice of Rabi systems coupled by a photon hopping term between near neighbor sites. For large enough