This paper is dedicated to the assessment of the validity of future coronal spectro-polarimetric observations and to prepare their interpretation in terms of the magnetic field vector.
Magnetic field measurements in the upper chromosphere and above, where the gas-to-magnetic pressure ratio $beta$ is lower than unity, are essential for understanding the thermal structure and dynamical activity of the solar atmosphere. Recent develop
ments in the theory and numerical modeling of polarization in spectral lines have suggested that information on the magnetic field of the chromosphere-corona transition region could be obtained by measuring the linear polarization of the solar disk radiation at the core of the hydrogen Lyman-$alpha$ line at 121.6~nm, which is produced by scattering processes and the Hanle effect. The Chromospheric Lyman-$alpha$ Spectropolarimeter (CLASP) sounding rocket experiment aims to measure the intensity (Stokes $I$) and the linear polarization profiles ($Q/I$ and $U/I$) of the hydrogen Lyman-$alpha$ line. In this paper we clarify the information that the Hanle effect can provide by applying a Stokes inversion technique based on a database search. The database contains all theoretical $Q/I$ and $U/I$ profiles calculated in a one-dimensional semi-empirical model of the solar atmosphere for all possible values of the strength, inclination, and azimuth of the magnetic field vector, though this atmospheric region is highly inhomogeneous and dynamic. We focus on understanding the sensitivity of the inversion results to the noise and spectral resolution of the synthetic observations as well as the ambiguities and limitation inherent to the Hanle effect when only the hydrogen Lyman-$alpha$ is used. We conclude that spectropolarimetric observations with CLASP can indeed be a suitable diagnostic tool for probing the magnetism of the transition region, especially when complemented with information on the magnetic field azimuth that can be obtained from other instruments.
The plasma thermodynamics in the solar upper atmosphere, particularly in the corona, are dominated by the magnetic field, which controls the flow and dissipation of energy. The relative lack of knowledge of the coronal vector magnetic field is a majo
r handicap for progress in coronal physics. This makes the development of measurement methods of coronal magnetic fields a high priority in solar physics. The Hanle effect in the UV and IR spectral lines is a largely unexplored diagnostic. We use magnetohydrodynamic (MHD) simulations to study the magnitude of the signal to be expected for typical coronal magnetic fields for selected spectral lines in the UV and IR wavelength ranges, namely the H I Ly-$alpha$ and the He I 10830 {AA} lines. We show that the selected lines are useful for reliable diagnosis of coronal magnetic fields. The results show that the combination of polarization measurements of spectral lines with different sensitivities to the Hanle effect may be most appropriate for deducing coronal magnetic properties from future observations.
We investigate the plasma and magnetic environment of active region NOAA 11261 on 2 August 2011 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI i
mages, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths, in order to pin down the intersection of previously reconnected flaring loops at the lower solar atmosphere. These locations are used to calculate field lines from 3D nonlinear force-free magnetic field models, established on the basis of SDO HMI photospheric vector magnetic field maps. With this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheets lower tip during an on-disk observed flare, as a few kilometers per second. Comparison to post-flare loops observed later above the limb in STEREO EUVI images supports this velocity estimate. Furthermore, we provide evidence for an implosion of parts of the flaring coronal model magnetic field, and identify the corresponding coronal sub-volumes associated to the loss of magnetic energy. Finally, we spatially relate the build up of magnetic energy in the 3D models to highly sheared fields, established due to dynamic relative motions of polarity patches within the active region.
The origin of the heliospheric magnetic flux on the Sun, and hence the origin of the solar wind, is a topic of hot debate.While the prevailing view is that the solar wind originates from outside coronal streamer helmets, there also exists the suggest
ion that the open magnetic field spans a far wider region.Without the definitive measurement of the coronal magnetic field, it is difficult to resolve the conflict between the two scenarios without doubt.We present two 2-dimensional, Alfvenic-turbulence-based models of the solar corona and solar wind, one with and the other without a closed magnetic field region in the inner corona.The purpose of the latter model is to test whether it is possible to realize a picture suggested by polarimetric measurements of the corona using the FeXIII 10747AA line, where open magnetic field lines seem to penetrate the streamer base.The boundary conditions at the coronal base are able to account for important observational constraints, especially those on the magnetic flux distribution.Interestingly, the two models provide similar polarized brightness (pB) distributions in the field of view (FOV) of SOHO/LASCO C2 and C3 coronagraphs.In particular, a dome-shaped feature is present in the C2 FOV even for the model without any closed magnetic field.Moreover, both models fit equally well the Ulysses data scaled to 1 AU.We suggest that: 1) The pB observations cannot be safely taken as a proxy for the magnetic field topology, as often implicitly assumed.2) The Ulysses measurements, especially the one showing a nearly uniform distribution with heliocentric latitude of the radial magnetic field, do not rule out the ubiquity of open magnetic fields on the Sun.
There is a thin transition region (TR) in the solar atmosphere where the temperature rises from 10,000 K in the chromosphere to millions of degrees in the corona. Little is known about the mechanisms that dominate this enigmatic region other than the
magnetic field plays a key role. The magnetism of the TR can only be detected by polarimetric measurements of a few ultraviolet (UV) spectral lines, the Lyman-$alpha$ line of neutral hydrogen at 121.6 nm (the strongest line of the solar UV spectrum) being of particular interest given its sensitivity to the Hanle effect (the magnetic-field-induced modification of the scattering line polarization). We report the discovery of linear polarization produced by scattering processes in the Lyman-$alpha$ line, obtained with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) rocket experiment. The Stokes profiles observed by CLASP in quiet regions of the solar disk show that the $Q/I$ and $U/I$ linear polarization signals are of the order of 0.1 % in the line core and up to a few percent in the nearby wings, and that both have conspicuous spatial variations with scales of $sim 10$ arcsec. These observations help constrain theoretical models of the chromosphere-corona TR and extrapolations of the magnetic field from photospheric magnetograms. In fact, the observed spatial variation from disk to limb of polarization at the line core and wings already challenge the predictions from three-dimensional magnetohydrodynamical models of the upper solar chromosphere.