ترغب بنشر مسار تعليمي؟ اضغط هنا

A candidate redshift z ~ 10 galaxy and rapid changes in that population at an age of 500 Myr

236   0   0.0 ( 0 )
 نشر من قبل Rychard J. Bouwens
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R.J. Bouwens




اسأل ChatGPT حول البحث

Searches for very-high-redshift galaxies over the past decade have yielded a large sample of more than 6,000 galaxies existing just 900-2,000 million years (Myr) after the Big Bang (redshifts 6 > z > 3; ref. 1). The Hubble Ultra Deep Field (HUDF09) data have yielded the first reliable detections of z ~ 8 galaxies that, together with reports of a gamma-ray burst at z ~ 8.2 (refs 10, 11), constitute the earliest objects reliably reported to date. Observations of z ~ 7-8 galaxies suggest substantial star formation at z > 9-10. Here we use the full two-year HUDF09 data to conduct an ultra-deep search for z ~ 10 galaxies in the heart of the reionization epoch, only 500 Myr after the Big Bang. Not only do we find one possible z ~ 10 galaxy candidate, but we show that, regardless of source detections, the star formation rate density is much smaller (~10%) at this time than it is just ~200 Myr later at z ~ 8. This demonstrates how rapid galaxy build-up was at z ~ 10, as galaxies increased in both luminosity density and volume density from z ~ 8 to z ~ 10. The 100-200 Myr before z ~ 10 is clearly a crucial phase in the assembly of the earliest galaxies.



قيم البحث

اقرأ أيضاً

116 - P. A. Oesch 2017
We present an analysis of all prime HST legacy fields spanning >800 arcmin^2 for the search of z~10 galaxy candidates and the study of their UV luminosity function (LF). In particular, we present new z~10 candidates selected from the full Hubble Fron tier Field (HFF) dataset. Despite the addition of these new fields, we find a low abundance of z~10 candidates with only 9 reliable sources identified in all prime HST datasets that include the HUDF09/12, the HUDF/XDF, all the CANDELS fields, and now the HFF survey. Based on this comprehensive search, we find that the UV luminosity function decreases by one order of magnitude from z~8 to z~10 at all luminosities over a four magnitude range. This also implies a decrease of the cosmic star-formation rate density by an order of magnitude within 170 Myr from z~8 to z~10. We show that this accelerated evolution compared to lower redshift can entirely be explained by the fast build-up of the dark matter halo mass function at z>8. Consequently, the predicted UV LFs from several models of galaxy formation are in good agreement with this observed trend, even though the measured UV LF lies at the low end of model predictions. In particular, the number of only 9 observed candidate galaxies is lower, by ~50%, than predicted by galaxy evolution models. The difference is generally still consistent within the Poisson and cosmic variance uncertainties. However, essentially all models predict larger numbers than observed. We discuss the implications of these results in light of the upcoming James Webb Space Telescope mission, which is poised to find much larger samples of z~10 galaxies as well as their progenitors at less than 400 Myr after the Big Bang.
140 - P. A. Oesch 2013
[abridged] We present the discovery of four surprisingly bright (H_160 ~ 26 - 27 mag AB) galaxy candidates at z~9-10 in the complete HST CANDELS WFC3/IR GOODS-N imaging data, doubling the number of z~10 galaxy candidates that are known, just ~500 Myr after the Big Bang. Two similarly bright sources are also detected in a systematic re-analysis of the GOODS-S data set. Three of the four galaxies in GOODS-N are significantly detected at 4.5-6.2sigma in the very deep Spitzer/IRAC 4.5 micron data, as is one of the GOODS-S candidates. Furthermore, the brightest of our candidates (at z=10.2+-0.4) is robustly detected also at 3.6 micron (6.9sigma), revealing a flat UV spectral energy distribution with a slope beta=-2.0+-0.2, consistent with demonstrated trends with luminosity at high redshift. The abundance of such luminous candidates suggests that the luminosity function evolves more significantly in phi_* than in L_* at z>~8 with a higher number density of bright sources than previously expected. Despite the discovery of these luminous candidates, the cosmic star formation rate density for galaxies with SFR >0.7 M_sun/yr shows an order-of-magnitude increase in only 170 Myr from z ~ 10 to z ~ 8, consistent with previous results. Based on the IRAC detections, we derive galaxy stellar masses at z~10, finding that these luminous objects are typically 10^9 M_sun. The cosmic stellar mass density at z~10 is log10 rho_* = 4.7^+0.5_-0.8 M_sun Mpc^-3 for galaxies brighter than M_UV~-18. The remarkable brightness, and hence luminosity, of these z~9-10 candidates highlights the opportunity for deep spectroscopy to determine their redshift and nature, demonstrates the value of additional search fields covering a wider area to understand star-formation in the very early universe, and highlights the opportunities for JWST to map the buildup of galaxies at redshifts much earlier than z~10.
118 - K. Kawara , S. Oyabu , Y. Matsuoka 2009
We present the detailed optical to far-infrared observations of SST J1604+4304, an ULIRG at z = 1.135. Analyzing the stellar absorption lines, namely, the CaII H & K and Balmer H lines in the optical spectrum, we derive the upper limits of an age for the stellar population. Given this constraint, the minimum {chi}^2 method is used to fit the stellar population models to the observed SED from 0.44 to 5.8um. We find the following properties. The stellar population has an age 40 - 200 Myr with a metallicity 2.5 Z_{sun}. The starlight is reddened by E(B-V) = 0.8. The reddening is caused by the foreground dust screen, indicating that dust is depleted in the starburst site and the starburst site is surrounded by a dust shell. The infrared (8-1000um) luminosity is L_{ir} = 1.78 +/- 0.63 * 10^{12} L_{sun}. This is two times greater than that expected from the observed starlight, suggesting either that 1/2 of the starburst site is completely obscured at UV-optical wavelengths, or that 1/2 of L_{ir} comes from AGN emission. The inferred dust mass is 2.0 +/- 1.0 * 10^8 M_{sun}. This is sufficient to form a shell surrounding the galaxy with an optical depth E(B-V) = 0.8. From our best stellar population model - an instantaneous starburst with an age 40 Myr, we infer the rate of 19 supernovae(SNe) per year. Simply analytical models imply that 2.5 Z_{sun} in stars was reached when the gas mass reduced to 30% of the galaxy mass. The gas metallcity is 4.8 Z_{sun} at this point. The gas-to-dust mass ratio is then 120 +/- 73. The inferred dust production rate is 0.24 +/- 0.12 M_{sun} per SN. If 1/2 of L_{ir} comes from AGN emission, the rate is 0.48 +/- 0.24 M_{sun} per SN. We discuss the evolutionary link of SST J1604+4304 to other galaxy populations in terms of the stellar masses and the galactic winds.
212 - M. D. Lehnert 2010
Galaxies had their most significant impact on the Universe when they assembled their first generations of stars. Energetic photons emitted by young, massive stars in primeval galaxies ionized the intergalactic medium surrounding their host galaxies, cleared sight-lines along which the light of the young galaxies could escape, and fundamentally altered the physical state of the intergalactic gas in the Universe continuously until the present day. Observations of the Cosmic Microwave Background, and of galaxies and quasars at the highest redshifts, suggest that the Universe was reionised through a complex process that was completed about a billion years after the Big Bang, by redshift z~6. Detecting ionizing Ly-alpha photons from increasingly distant galaxies places important constraints on the timing, location and nature of the sources responsible for reionisation. Here we report the detection of Ly-a photons emitted less than 600 million years after the Big Bang. UDFy-38135539 is at a redshift z=8.5549+-0.0002, which is greater than those of the previously known most distant objects, at z=8.2 and z=6.97. We find that this single source is unlikely to provide enough photons to ionize the volume necessary for the emission line to escape, requiring a significant contribution from other, probably fainter galaxies nearby.
Stellar archeology shows that massive elliptical galaxies today formed rapidly about ten billion years ago with star formation rates above several hundreds solar masses per year (M_sun/yr). Their progenitors are likely the sub-millimeter-bright galax ies (SMGs) at redshifts (z) greater than 2. While SMGs mean molecular gas mass of 5x10^10 M_sun can explain the formation of typical elliptical galaxies, it is inadequate to form ellipticals that already have stellar masses above 2x10^11 M_sun at z ~ 2. Here we report multi-wavelength high-resolution observations of a rare merger of two massive SMGs at z = 2.3. The system is currently forming stars at a tremendous rate of 2,000 M_sun/yr. With a star formation efficiency an order-of-magnitude greater than that of normal galaxies, it will quench the star formation by exhausting the gas reservoir in only ~200 million years. At a projected separation of 19 kiloparsecs, the two massive starbursts are about to merge and form a passive elliptical galaxy with a stellar mass of ~4x10^11 M_sun. Our observations show that gas-rich major galaxy mergers, concurrent with intense star formation, can form the most massive elliptical galaxies by z ~ 1.5.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا