ترغب بنشر مسار تعليمي؟ اضغط هنا

The Most Luminous z~9-10 Galaxy Candidates yet Found: The Luminosity Function, Cosmic Star-Formation Rate, and the First Mass Density Estimate at 500 Myr

136   0   0.0 ( 0 )
 نشر من قبل Pascal Oesch
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. A. Oesch




اسأل ChatGPT حول البحث

[abridged] We present the discovery of four surprisingly bright (H_160 ~ 26 - 27 mag AB) galaxy candidates at z~9-10 in the complete HST CANDELS WFC3/IR GOODS-N imaging data, doubling the number of z~10 galaxy candidates that are known, just ~500 Myr after the Big Bang. Two similarly bright sources are also detected in a systematic re-analysis of the GOODS-S data set. Three of the four galaxies in GOODS-N are significantly detected at 4.5-6.2sigma in the very deep Spitzer/IRAC 4.5 micron data, as is one of the GOODS-S candidates. Furthermore, the brightest of our candidates (at z=10.2+-0.4) is robustly detected also at 3.6 micron (6.9sigma), revealing a flat UV spectral energy distribution with a slope beta=-2.0+-0.2, consistent with demonstrated trends with luminosity at high redshift. The abundance of such luminous candidates suggests that the luminosity function evolves more significantly in phi_* than in L_* at z>~8 with a higher number density of bright sources than previously expected. Despite the discovery of these luminous candidates, the cosmic star formation rate density for galaxies with SFR >0.7 M_sun/yr shows an order-of-magnitude increase in only 170 Myr from z ~ 10 to z ~ 8, consistent with previous results. Based on the IRAC detections, we derive galaxy stellar masses at z~10, finding that these luminous objects are typically 10^9 M_sun. The cosmic stellar mass density at z~10 is log10 rho_* = 4.7^+0.5_-0.8 M_sun Mpc^-3 for galaxies brighter than M_UV~-18. The remarkable brightness, and hence luminosity, of these z~9-10 candidates highlights the opportunity for deep spectroscopy to determine their redshift and nature, demonstrates the value of additional search fields covering a wider area to understand star-formation in the very early universe, and highlights the opportunities for JWST to map the buildup of galaxies at redshifts much earlier than z~10.



قيم البحث

اقرأ أيضاً

Measurements of the low-z Halpha luminosity function have a large dispersion in the local number density of sources, and correspondingly in the SFR density. The possible causes for these discrepancies include limited volume sampling, biases arising f rom survey sample selection, different methods of correcting for dust obscuration and AGN contamination. The Galaxy And Mass Assembly (GAMA) survey and Sloan Digital Sky Survey (SDSS) provide deep spectroscopic observations over a wide sky area enabling detection of a large sample of star-forming galaxies spanning 0.001<SFR(Halpha)<100 with which to robustly measure the evolution of the SFR density in the low-z universe. The large number of high SFR galaxies present in our sample allow an improved measurement of the bright end of the luminosity function, indicating that the decrease in number density of sources at bright luminosities is best described by a Saunders functional form rather than the traditional Schechter function. This result is consistent with other published luminosity functions in the FIR and radio. For GAMA and SDSS we find the r-band apparent magnitude limit, combined with the subsequent requirement for Halpha detection leads to an incompleteness due to missing bright Halpha sources with faint r-band magnitudes.
264 - Chun Ly (1 , 2 , 3 2010
[Abridged] We present new measurements of the H-alpha luminosity function (LF) and SFR volume density for galaxies at z~0.8. Our analysis is based on 1.18$mu$m narrowband data from the NEWFIRM H-alpha Survey, a comprehensive program designed to captu re deep samples of intermediate redshift emission-line galaxies using narrowband imaging in the near-infrared. The combination of depth ($approx1.9times10^{-17}$ erg s$^{-1}$ cm$^{-2}$ in H-alpha at 3$sigma$) and areal coverage (0.82 deg$^2$) complements other recent H-alpha studies at similar redshifts, and enables us to minimize the impact of cosmic variance and place robust constraints on the shape of the LF. The present sample contains 818 NB118 excess objects, 394 of which are selected as H-alpha emitters. Optical spectroscopy has been obtained for 62% of the NB118 excess objects. Empirical optical broadband color classification is used to sort the remainder of the sample. A comparison of the LFs constructed for the four individual fields reveals significant cosmic variance, emphasizing that multiple, widely separated observations are required. The dust-corrected LF is well-described by a Schechter function with L*=10^{43.00pm0.52} ergs s^{-1}, phi*=10^{-3.20pm0.54} Mpc^{-3}, and alpha=-1.6pm0.19. We compare our H-alpha LF and SFR density to those at z<1, and find a rise in the SFR density propto(1+z)^{3.4}, which we attribute to significant L* evolution. Our H-alpha SFR density of 10^{-1.00pm0.18} M_sun yr^{-1} Mpc^{-3} is consistent with UV and [O II] measurements at z~1. We discuss how these results compare to other H-alpha surveys at z~0.8, and find that the different methods used to determine survey completeness can lead to inconsistent results. This suggests that future surveys probing fainter luminosities are needed, and more rigorous methods of estimating the completeness should be adopted as standard procedure.
We utilise a two-color Lyman-Break selection criterion to search for z~9-10 galaxies over the first 19 clusters in the CLASH program. A systematic search yields three z~9-10 candidates. While we have already reported the most robust of these candidat es, MACS1149-JD, two additional z~9 candidates are also found and have H_{160}-band magnitudes of ~26.2-26.9. A careful assessment of various sources of contamination suggests <~1 contaminants for our z~9-10 selection. To determine the implications of these search results for the LF and SFR density at z~9, we introduce a new differential approach to deriving these quantities in lensing fields. Our procedure is to derive the evolution by comparing the number of z~9-10 galaxy candidates found in CLASH with the number of galaxies in a slightly lower redshift sample (after correcting for the differences in selection volumes), here taken to be z~8. This procedure takes advantage of the fact that the relative volumes available for the z~8 and z~9-10 selections behind lensing clusters are not greatly dependent on the details of the lensing models. We find that the normalization of the UV LF at z~9 is just 0.28_{-0.20}^{+0.39}times that at z~8, ~1.4_{-0.8}^{+3.0}x lower than extrapolating z~4-8 LF results. While consistent with the evolution in the UV LF seen at z~4-8, these results marginally favor a more rapid evolution at z>8. Compared to similar evolutionary findings from the HUDF, our result is less insensitive to large-scale structure uncertainties, given our many independent sightlines on the high-redshift universe.
We use a robust sample of 11 z~7 galaxies (z-dropouts) to estimate the stellar mass density of the universe when it was only ~750 Myr old. We combine the very deep optical to near-Infrared photometry from the HST ACS and NICMOS cameras with mid-Infra red Spitzer IRAC imaging available through the GOODS program. After carefully removing the flux from contaminating foreground sources we have obtained reliable photometry in the 3.6 and 4.5 micron IRAC channels. The spectral shapes of these sources, including their rest frame optical colors, strongly support their being at z~7 with a mean photometric redshift of <z>=7.2+/-0.5. We use Bruzual & Charlot (2003) synthetic stellar population models to constrain their stellar masses and star formation histories. We find stellar masses that range over 0.1 -12x10^9 M_sol and average ages from 20 Myr to up to 425 Myr with a mean of ~300 Myr, suggesting that in some of these galaxies most of the stars were formed at z>8 (and probably at z>~10). The best fits to the observed SEDs are consistent with little or no dust extinction, in agreement with recent results at z~4-8. The star formation rates (SFR) are in the range from 5-20 M_sol/yr. From this sample we measure a stellar mass density of 6.6_{-3.3}^{+5.4}x10^5 M_sol/Mpc^3 to a limit of M_{UV,AB}<-20 (or 0.4 L*(z=3)). Combined with a fiducial lower limit for their ages (80 Myr) this implies a maximum SFR density of 0.008 M_sol/yr/Mpc^3. This is well below the critical level needed to reionize the universe at z~8 using standard assumptions. However, this result is based on luminous sources (>L*) and does not include the dominant contribution of the fainter galaxies. Strikingly, we find that the specific SFR is constant from z~7 to z~2 but drops substantially at more recent times.
We identified the z~2 Lyman break galaxies using deep HST ultraviolet (F275W/F336W) imaging of Abell 1689. Because of the imaging depth and the large magnification provided by the cluster, we detect galaxies 100x fainter (-19.5< M_1500 <-13) than pre vious surveys at this redshift. We are able to calculate the intrinsic sensitivity of the observations as a function of source plane position, allowing determinations of effective volume as a function of luminosity. We fit the faint-end slope of the luminosity function to be alpha = -1.74 +/-0.08, consistent with the values obtained for 2.5 < z < 6. There is no turnover in the luminosity function down to MUV = -13. The trend of increasingly redder UV spectral slopes with luminosity at higher redshifts is observed in our sample, but with redder slopes at all luminosities and average reddening of < E(B - V) >= 0.15. We assume the stars in these galaxies are metal poor (0.2Z_sun) compared to their brighter counterparts (Z_sun), resulting in bluer assumed intrinsic UV slopes and larger derived dust extinction. The total UV luminosity density at z ~ 2 is 4.31x10^26 erg/s/Hz/Mpc^3, more than 70% of which is emitted by galaxies in the luminosity range of our sample. We determine the star formation rate density at z ~ 2 (assuming constant dust extinction correction of 4.2 over all luminosities and a Kroupa IMF) of 0.148 M/yr/Mpc^3, significantly higher than previous determinations because of the additional population of fainter galaxies and the larger dust correction factors.[abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا