ترغب بنشر مسار تعليمي؟ اضغط هنا

Rydberg trimers and excited dimers bound by internal quantum reflection

314   0   0.0 ( 0 )
 نشر من قبل Vera Bendkowsky
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum reflection is a pure wave phenomena that predicts reflection of a particle at a changing potential for cases where complete transmission occurs classically. For a chemical bond, we find that this effect can lead to non-classical vibrational turning points and bound states at extremely large interatomic distances. Only recently has the existence of such ultralong-range Rydberg molecules been demonstrated experimentally. Here, we identify a broad range of molecular lines, most of which are shown to originate from two different novel sources: a single-photon associated triatomic molecule formed by a Rydberg atom and two ground state atoms and a series of excited dimer states that are bound by a so far unexplored mechanism based on internal quantum reflection at a steep potential drop. The properties of the Rydberg molecules identified in this work qualify them as prototypes for a new type of chemistry at ultracold temperatures.



قيم البحث

اقرأ أيضاً

A Rydberg and a ground-state atom can form ultralong range diatomic molecules provided the interaction between the ground-state atom and the Rydberg electron is attractive [C. H. Greene, et al., Phys. Rev. Lett. 85, 2458 (2000)]. A repulsive interact ion does not support bound states. However, as we will show, adding a second ground-state atom, a bound triatomic molecule becomes possible constituting a Borromean Rydberg system.
We study the van der Waals interaction between Rydberg alkali-metal atoms with fine structure ($n^2L_j$; $Lleq 2$) and heteronuclear alkali-metal dimers in the ground rovibrational state ($X^1Sigma^+$; $v=0$, $J=0$). We compute the associated $C_6$ d ispersion coefficients of atom-molecule pairs involving $^{133}$Cs and $^{85}$Rb atoms interacting with KRb, LiCs, LiRb, and RbCs molecules. The obtained dispersion coefficients can be accurately fitted to a state-dependent polynomial $O(n^7)$ over the range of principal quantum numbers $40leq nleq 150$. For all atom-molecule pairs considered, Rydberg states $n^2S_j$ and $n^2P_j$ result in attractive $1/R^6$ potentials. In contrast, $n^2D_j$ states can give rise to repulsive potentials for specific atom-molecule pairs. The interaction energy at the LeRoy distance approximately scales as $n^{-5}$ for $n>40$. For intermediate values of $nlesssim40$, both repulsive and attractive interaction energies in the order of $ 10-100 ,mu$K can be achieved with specific atomic and molecular species. The accuracy of the reported $C_6$ coefficients is limited by the quality of the atomic quantum defects, with relative errors $Delta C_6/C_6$ estimated to be no greater than 1% on average.
A powerful experimental technique to study Efimov physics at positive scattering lengths is demonstrated. We use the Feshbach dimers as a local reference for Efimov trimers by creating a coherent superposition of both states. Measurement of its coher ent evolution provides information on the binding energy of the trimers with unprecedented precision and yields access to previously inaccessible parameters of the system such as the Efimov trimers lifetime and the elastic processes between atoms and the constituents of the superposition state. We develop a comprehensive data analysis suitable for noisy experimental data that confirms the trustworthiness of our demonstration.
Since their first experimental observation, ultralong-range Rydberg molecules consisting of a highly excited Rydberg atom and a ground state atom have attracted the interest in the field of ultracold chemistry. Especially the intriguing properties li ke size, polarizability and type of binding they inherit from the Rydberg atom are of interest. An open question in the field is the reduced lifetime of the molecules compared to the corresponding atomic Rydberg states. In this letter we present an experimental study on the lifetimes of the ^3Sigma (5s-35s) molecule in its vibrational ground state and in an excited state. We show that the lifetimes depends on the density of ground state atoms and that this can be described in the frame of a classical scattering between the molecules and ground state atoms. We also find that the excited molecular state has an even more reduced lifetime compared to the ground state which can be attributed to an inward penetration of the bound atomic pair due to imperfect quantum reflection that takes place in the special shape of the molecular potential.
160 - O. Thomas , C. Lippe , T. Eichert 2018
In this work we discuss the rotational structure of Rydberg molecules. We calculate the complete wave function in a laboratory fixed frame and derive the transition matrix elements for the pho- toassociation of free ground state atoms. We discuss the implications for the excitation of different rotational states as well as the shape of the angular nuclear wave function. We find a rather com- plex shape and unintuitive coupling strengths, depending on the angular momenta coupling that are relevant for the states. This work explains the different steps to calculate the wave functions and the transition matrix elements in a way, that they can be directly transferred to different molecular states, atomic species or molecular coupling cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا