ترغب بنشر مسار تعليمي؟ اضغط هنا

A coherent superposition of Feshbach dimers and Efimov trimers

381   0   0.0 ( 0 )
 نشر من قبل Lev Khaykovich
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A powerful experimental technique to study Efimov physics at positive scattering lengths is demonstrated. We use the Feshbach dimers as a local reference for Efimov trimers by creating a coherent superposition of both states. Measurement of its coherent evolution provides information on the binding energy of the trimers with unprecedented precision and yields access to previously inaccessible parameters of the system such as the Efimov trimers lifetime and the elastic processes between atoms and the constituents of the superposition state. We develop a comprehensive data analysis suitable for noisy experimental data that confirms the trustworthiness of our demonstration.

قيم البحث

اقرأ أيضاً

Ultracold molecules have experienced increasing attention in recent years. Compared to ultracold atoms, they possess several unique properties that make them perfect candidates for the implementation of new quantum-technological applications in sever al fields, from quantum simulation to quantum sensing and metrology. In particular, ultracold molecules of two-electron atoms (such as strontium or ytterbium) also inherit the peculiar properties of these atomic species, above all the possibility to access metastable electronic states via direct excitation on optical clock transitions with ultimate sensitivity and accuracy. In this paper we report on the production and coherent manipulation of molecular bound states of two fermionic $^{173}$Yb atoms in different electronic (orbital) states $^1$S$_0$ and $^3$P$_0$ in proximity of a scattering resonance involving atoms in different spin and electronic states, called orbital Feshbach resonance. We demonstrate that orbital molecules can be coherently photoassociated starting from a gas of ground-state atoms in a three-dimensional optical lattices by observing several photoassociation and photodissociation cycles. We also show the possibility to coherently control the molecular internal state by using Raman-assisted transfer to swap the nuclear spin of one of the atoms forming the molecule, thus demonstrating a powerful manipulation and detection tool of these molecular bound states. Finally, by exploiting this peculiar detection technique we provide first information on the lifetime of the molecular states in a many-body setting, paving the way towards future investigations of strongly interacting Fermi gases in a still unexplored regime.
The dimensionality of a system can fundamentally impact the behaviour of interacting quantum particles. Classic examples range from the fractional quantum Hall effect to high temperature superconductivity. As a general rule, one expects confinement t o favour the binding of particles. However, attractively interacting bosons apparently defy this expectation: while three identical bosons in three dimensions can support an infinite tower of Efimov trimers, only two universal trimers exist in the two dimensional case. We reveal how these two limits are connected by investigating the problem of three identical bosons confined by a harmonic potential along one direction. We show that the confinement breaks the discrete Efimov scaling symmetry and destroys the weakest bound trimers. However, the deepest bound Efimov trimer persists under strong confinement and hybridizes with the quasi-two-dimensional trimers, yielding a superposition of trimer configurations that effectively involves tunnelling through a short-range repulsive barrier. Our results suggest a way to use strong confinement to engineer more stable Efimov-like trimers, which have so far proved elusive.
We study three-atom inelastic scattering in ultracold textsuperscript{39}K near a Feshbach resonance of intermediate coupling strength. The non-universal character of such resonance leads to an abnormally large Efimov absolute length scale and a rela tively small effective range $r_e$, allowing the features of the textsuperscript{39}K Efimov spectrum to be better isolated from the short-range physics. Meticulous characterization of and correction for finite temperature effects ensure high accuracy on the measurements of these features at large-magnitude scattering lengths. For a single Feshbach resonance, we unambiguously locate four distinct features in the Efimov structure. Three of these features form ratios that obey the Efimov universal scaling to within 10%, while the fourth feature, occurring at a value of scattering length closest to $r_e$, instead deviates from the universal value.
In this paper we discuss the recent discovery of the universality of the three-body parameter (3BP) from Efimov physics. This new result was identified by recent experimental observations in ultracold quantum gases where the value of the s-wave scatt ering length, $a=a_-$, at which the first Efimov resonance is created was found to be nearly the same for a range of atomic species --- if scaled as $a_-/r_{rm vdW}$, where $r_{rm vdW}$ is the van der Waals length. Here, we discuss some of the physical principles related to these observations that emerge from solving the three-body problem with van der Waals interactions in the hyperspherical formalism. We also demonstrate the strong three-body multichannel nature of the problem and the importance of properly accounting for nonadiabatic effects.
We investigate magnetoassociation of ultracold fermionic Feshbach molecules in a mixture of $^{40}$K and $^{87}$Rb atoms, where we can create as many as $7times 10^4$ $^{40}$K$^{87}$Rb molecules with a conversion efficiency as high as 45%. In the per turbative regime, we find that the conversion efficiency depends linearly on the density overlap of the two gases, with a slope that matches a parameter-free model that uses only the atom masses and the known Feshbach resonance parameters. In the saturated regime, we find that the maximum number of Feshbach molecules depends on the atoms phase-space density. At higher temperatures, our measurements agree with a phenomenological model that successfully describes the formation of bosonic molecules from either Bose or Fermi gases. However, for quantum degenerate atom gas mixtures, we measure significantly fewer molecules than this model predicts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا