ﻻ يوجد ملخص باللغة العربية
We have obtained the zero-temperature phase diagram of the kagome antiferromagnet with Dzyaloshinskii-Moriya interactions in Schwinger-boson mean-field theory. We find quantum phase transitions (first or second order) between different topological spin liquids and Neel ordered phases (either the $sqrt{3} times sqrt{3}$ state or the so-called Q=0 state). In the regime of small Schwinger-boson density, the results bear some resemblances with exact diagonalization results and we briefly discuss some issues of the mean-field treatment. We calculate the equal-time structure factor (and its angular average to allow for a direct comparison with experiments on powder samples), which extends earlier work on the classical kagome to the quantum regime. We also discuss the dynamical structure factors of the topological spin liquid and the Neel ordered phase.
A preponderance of evidence suggests that the ground state of the nearest-neighbor $S = 1/2$ antiferromagnetic Heisenberg model on the kagome lattice is a gapless spin liquid. Many candidate materials for the realization of this model possess in addi
We have studied the phase diagram and entanglement of the one dimensional Ising model with Dzyaloshinskii-Moriya (DM) interaction. We have applied the quantum renormalization group (QRG) approach to get the stable fixed points, critical point and the
The kagome lattice sits at the crossroad of present research efforts in quantum spin liquids, chiral phases, emergent skyrmion excitations and anomalous Hall effects to name but a few. In light of this diversity, our goal in this paper is to build a
We have theoretically studied the spin structure factors of Heisenberg model on honeycomb lattice in the presence of longitudinal magnetic field, i.e. magnetic field perpendicular to the honeycomb plane, and Dzyaloshinskii-Moriya interaction. The pos
We compute the zero temperature dynamical structure factor $S({bf q},omega)$ of the triangular lattice Heisenberg model (TLHM) using a Schwinger boson approach that includes the Gaussian fluctuations ($1/N$ corrections) of the saddle point solution.