ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase Diagram and Entanglement of Ising Model With Dzyaloshinskii-Moriya Interaction

192   0   0.0 ( 0 )
 نشر من قبل Mehdi Kargarian
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the phase diagram and entanglement of the one dimensional Ising model with Dzyaloshinskii-Moriya (DM) interaction. We have applied the quantum renormalization group (QRG) approach to get the stable fixed points, critical point and the scaling of coupling constants. This model has two phases, antiferromagnetic and saturated chiral ones. We have shown that the staggered magnetization is the order parameter of the system and DM interaction produces the chiral order in both phases. We have also implemented the exact diagonalization (Lanczos) method to calculate the static structure factors. The divergence of structure factor at the ordering momentum as the size of systems goes to infinity defines the critical point of the model. Moreover, we have analyzed the relevance of the entanglement in the model which allows us to shed insight on how the critical point is touched as the size of the system becomes large. Nonanalytic behavior of entanglement and finite size scaling have been analyzed which is tightly connected to the critical properties of the model. It is also suggested that a spin-fluid phase has a chiral order in terms of new spin operators which are defined by a nonlocal transformation.



قيم البحث

اقرأ أيضاً

114 - N. Amiri , A. Langari 2012
We present the zero temperature phase diagram of the bond alternating Ising chain in the presence of Dzyaloshinskii-Moriya interaction. An abrupt change in ground state fidelity is a signature of quantum phase transition. We obtain the renormalizatio n of fidelity in terms of quantum renormalization group without the need to know the ground state. We calculate the fidelity susceptibility and its scaling behavior close to quantum critical point (QCP) to find the critical exponent which governs the divergence of correlation length. The model consists of a long range antiferromagnetic order with nonzero staggered magnetization which is separated from a helical ordered phase at QCP. Our results state that the critical exponent is independent of the bond alternation parameter (lambda) while the maximum attainable helical order depends on lambda.
We report a combined analytical and density matrix renormalized group study of the antiferromagnetic XXZ spin-1/2 Heisenberg chain subject to a uniform Dzyaloshinskii-Moriya (DM) interaction and a transverse magnetic field. The numerically determined phase diagram of this model, which features two ordered Ising phases and a critical Luttinger liquid one with fully broken spin-rotational symmetry, agrees well with the predictions of Garate and Affleck [Phys. Rev. B 81, 144419 (2010)]. We also confirm the prevalence of the N z Neel Ising order in the regime of comparable DM and magnetic field magnitudes.
In this work, we address the ground state properties of the anisotropic spin-1/2 Heisenberg XYZ chain under the interplay of magnetic fields and the Dzyaloshinskii-Moriya (DM) interaction which we interpret as an electric field. The identification of the regions of enhanced sensitivity determines criticality in this model. We calculate the Wigner-Yanase skew information (WYSI) as a coherence witness of an arbitrary two-qubit state under specific measurement bases. The WYSI is demonstrated to be a good indicator for detecting the quantum phase transitions. The finite-size scaling of coherence susceptibility is investigated. We find that the factorization line in the antiferromagnetic phase becomes the factorization volume in the gapless chiral phase induced by DM interactions, implied by the vanishing concurrence for a wide range of field. We also present the phase diagram of the model with three phases: antiferromagnetic, paramagnetic, and chiral, and point out a few common mistakes in deriving the correlation functions for the systems with broken reflection symmetry.
We have obtained the zero-temperature phase diagram of the kagome antiferromagnet with Dzyaloshinskii-Moriya interactions in Schwinger-boson mean-field theory. We find quantum phase transitions (first or second order) between different topological sp in liquids and Neel ordered phases (either the $sqrt{3} times sqrt{3}$ state or the so-called Q=0 state). In the regime of small Schwinger-boson density, the results bear some resemblances with exact diagonalization results and we briefly discuss some issues of the mean-field treatment. We calculate the equal-time structure factor (and its angular average to allow for a direct comparison with experiments on powder samples), which extends earlier work on the classical kagome to the quantum regime. We also discuss the dynamical structure factors of the topological spin liquid and the Neel ordered phase.
Recently, there has been an increased interest in studying quantum entanglement and quantum coherence. Since both of these properties are attributed to the existence of quantum superposition, it would be useful to determine if some type of correlatio n between them exists. Hence, the purpose of this paper is to explore the type of the correlation in several systems with different types of anisotropy. The focus will be on the XY spin chains with the Dzyaloshinskii-Moriya interaction and the type of the mentioned bond will be explored using the quantum renormalization group method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا