ترغب بنشر مسار تعليمي؟ اضغط هنا

Operator Space theory: a natural framework for Bell inequalities

280   0   0.0 ( 0 )
 نشر من قبل David Perez-Garcia
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this letter we show that the field of Operator Space Theory provides a general and powerful mathematical framework for arbitrary Bell inequalities, in particular regarding the scaling of their violation within quantum mechanics. We illustrate the power of this connection by showing that bipartite quantum states with local Hilbert space dimension n can violate a Bell inequality by a factor of order $frac{sqrt{n}}{log^2n}$ when observables with n possible outcomes are used. Applications to resistance to noise, Hilbert space dimension estimates and communication complexity are given.



قيم البحث

اقرأ أيضاً

In this work we show that bipartite quantum states with local Hilbert space dimension n can violate a Bell inequality by a factor of order $sqrt{n}$ (up to a logarithmic factor) when observables with n possible outcomes are used. A central tool in th e analysis is a close relation between this problem and operator space theory and, in particular, the very recent noncommutative $L_p$ embedding theory. As a consequence of this result, we obtain better Hilbert space dimension witnesses and quantum violations of Bell inequalities with better resistance to noise.
Finding all Bell inequalities for a given number of parties, measurement settings, and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found b y examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.
Bell inequalities are important tools in contrasting classical and quantum behaviors. To date, most Bell inequalities are linear combinations of statistical correlations between remote parties. Nevertheless, finding the classical and quantum mechanic al (Tsirelson) bounds for a given Bell inequality in a general scenario is a difficult task which rarely leads to closed-form solutions. Here we introduce a new class of Bell inequalities based on products of correlators that alleviate these issues. Each such Bell inequality is associated with a unique coordination game. In the simplest case, Alice and Bob, each having two random variables, attempt to maximize the area of a rectangle and the rectangles area is represented by a certain parameter. This parameter, which is a function of the correlations between their random variables, is shown to be a Bell parameter, i.e. the achievable bound using only classical correlations is strictly smaller than the achievable bound using non-local quantum correlations We continue by generalizing to the case in which Alice and Bob, each having now n random variables, wish to maximize a certain volume in n-dimensional space. We term this parameter a multiplicative Bell parameter and prove its Tsirelson bound. Finally, we investigate the case of local hidden variables and show that for any deterministic strategy of one of the players the Bell parameter is a harmonic function whose maximum approaches the Tsirelson bound as the number of measurement devices increases. Some theoretical and experimental implications of these results are discussed.
We introduce Bell inequalities based on covariance, one of the most common measures of correlation. Explicit examples are discussed, and violations in quantum theory are demonstrated. A crucial feature of these covariance Bell inequalities is their n onlinearity; this has nontrivial consequences for the derivation of their local bound, which is not reached by deterministic local correlations. For our simplest inequality, we derive analytically tight bounds for both local and quantum correlations. An interesting application of covariance Bell inequalities is that they can act as shared randomness witnesses: specifically, the value of the Bell expression gives device-independent lower bounds on both the dimension and the entropy of the shared random variable in a local model.
A method for construction of the multipartite Clauser-Horne-Shimony-Holt (CHSH) type Bell inequalities, for the case of local binary observables, is presented. The standard CHSH-type Bell inequalities can be obtained as special cases. A unified frame work to establish all kinds of CHSH-type Bell inequalities by increasing step by step the number of observers is given. As an application, compact Bell inequalities, for eight observers, involving just four correlation functions are proposed. They require much less experimental effort than standard methods and thus is experimentally friendly in multi-photon experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا