ﻻ يوجد ملخص باللغة العربية
A method for construction of the multipartite Clauser-Horne-Shimony-Holt (CHSH) type Bell inequalities, for the case of local binary observables, is presented. The standard CHSH-type Bell inequalities can be obtained as special cases. A unified framework to establish all kinds of CHSH-type Bell inequalities by increasing step by step the number of observers is given. As an application, compact Bell inequalities, for eight observers, involving just four correlation functions are proposed. They require much less experimental effort than standard methods and thus is experimentally friendly in multi-photon experiments.
In recent papers, the theory of representations of finite groups has been proposed to analyzing the violation of Bell inequalities. In this paper, we apply this method to more complicated cases. For two partite system, Alice and Bob each make one of
Bell inequality with self-testing property has played an important role in quantum information field with both fundamental and practical applications. However, it is generally challenging to find Bell inequalities with self-testing property for multi
D{u}r [Phys. Rev. Lett. {bf 87}, 230402 (2001)] constructed $N$-qubit bound entangled states which violate a Bell inequality for $Nge 8$, and his result was recently improved by showing that there exists an $N$-qubit bound entangled state violating t
For any finite number of parts, measurements and outcomes in a Bell scenario we estimate the probability of random $N$-qu$d$it pure states to substantially violate any Bell inequality with uniformly bounded coefficients. We prove that under some cond
We report on the experimental violation of multipartite Bell inequalities by entangled states of trapped ions. First we consider resource states for measurement-based quantum computation of between 3 and 7 ions and show that all strongly violate a Be