ﻻ يوجد ملخص باللغة العربية
The solar magnetic field is key to understanding the physical processes in the solar atmosphere. Nonlinear force-free codes have been shown to be useful in extrapolating the coronal field from underlying vector boundary data [see Schrijver et al. 2006 for an overview]. However, we can only measure the magnetic field vector routinely with high accuracy in the photosphere with, e.g., Hinode/SOT, and unfortunately these data do not fulfill the force-free consistency condition as defined by Aly (1989). We must therefore apply some transformations to these data before nonlinear force-free extrapolation codes can be legitimately applied. To this end, we have developed a minimization procedure that uses the measured photospheric field vectors as input to approximate a more chromospheric like field The method was dubbed preprocessing. See Wiegelmann et al. 2006 for details]. The procedure includes force-free consistency integrals and spatial smoothing. The method has been intensively tested with model active regions [see Metcalf et al. 2008] and been applied to several ground based vector magnetogram data before. Here we apply the preprocessing program to photospheric magnetic field measurements with the Hinode/SOT instrument.
Context: Knowledge about the coronal magnetic field is important to the understanding the structure of the solar corona. We compute the field in the higher layers of the solar atmosphere from the measured photospheric field under the assumption that
The SDO/HMI instruments provide photospheric vector magnetograms with a high spatial and temporal resolution. Our intention is to model the coronal magnetic field above active regions with the help of a nonlinear force-free extrapolation code. Our co
Context: Solar magnetic fields are regularly extrapolated into the corona starting from photospheric magnetic measurements that can suffer from significant uncertainties. Aims: Here we study how inaccuracies introduced into the maps of the photospher
Extrapolations of solar photospheric vector magnetograms into three-dimensional magnetic fields in the chromosphere and corona are usually done under the assumption that the fields are force-free. The field calculations can be improved by preprocessi
The minimum-energy configuration for the magnetic field above the solar photosphere is curl-free (hence, by Amperes law, also current-free), so can be represented as the gradient of a scalar potential. Since magnetic fields are divergence free, this