ﻻ يوجد ملخص باللغة العربية
We present the discovery of a Neptune-mass planet OGLE-2007-BLG-368Lb with a planet-star mass ratio of q=[9.5 +/- 2.1] x 10^{-5} via gravitational microlensing. The planetary deviation was detected in real-time thanks to the high cadence of the MOA survey, real-time light curve monitoring and intensive follow-up observations. A Bayesian analysis returns the stellar mass and distance at M_l = 0.64_{-0.26}^{+0.21} M_sun and D_l = 5.9_{-1.4}^{+0.9} kpc, respectively, so the mass and separation of the planet are M_p = 20_{-8}^{+7} M_oplus and a = 3.3_{-0.8}^{+1.4} AU, respectively. This discovery adds another cold Neptune-mass planet to the planetary sample discovered by microlensing, which now comprise four cold Neptune/Super-Earths, five gas giant planets, and another sub-Saturn mass planet whose nature is unclear. The discovery of these ten cold exoplanets by the microlensing method implies that the mass ratio function of cold exoplanets scales as dN_{rm pl}/dlog q propto q^{-0.7 +/- 0.2} with a 95% confidence level upper limit of n < -0.35 (where dN_{rm pl}/dlog q propto q^n). As microlensing is most sensitive to planets beyond the snow-line, this implies that Neptune-mass planets are at least three times more common than Jupiters in this region at the 95% confidence level.
We report the discovery of the planet OGLE-2018-BLG-0532Lb, with very obvious signatures in the light curve that lead to an estimate of the planet-host mass ratio $q=M_{rm planet}/M_{rm host}simeq 1times10^{-4}$. Although there are no obvious systema
We report the detection of a Cold Neptune m_planet=21+/-2MEarth orbiting a 0.38MSol M dwarf lying 2.5-3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of pla
We detect a Neptune mass-ratio (q~8e-5) planetary companion to the lens star in the extremely high-magnification (A~800) microlensing event OGLE-2005-BLG-169. If the parent is a main-sequence star, it has mass M~0.5 M_sun implying a planet mass of ~1
We present the analysis of the microlensing event OGLE-2015-BLG-1670, detected in a high-extinction field, very close to the Galactic plane. Due to the dust extinction along the line of sight, this event was too faint to be detected before it reached
We report the discovery of a cold planet with a very low planet/host mass ratio of $q=(4.09pm0.27) times 10^{-5}$, which is similar to the ratio of Uranus/Sun ($q=4.37 times 10^{-5}$) in the Solar system. The Bayesian estimates for the host mass, pla